Thermally processed rice starch impacts glucose homeostasis in mice to different degrees via disturbing gut microbial structure and intestinal barrier function.

Carbohydr Polym

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Analysis and Testing Center, Jiangnan University, Wuxi 214122, China. Electronic address:

Published: January 2025

Long-term intake of thermally processed starch-based foods may impact glucose homeostasis, but the consistency of the effects of various thermal treatments and the reasons are not clear. In this study, thermal treatments, especially boiling, damaged the crystal structure and inter-molecular hydrogen bonds of starch-based blends, thus decreasing the structural order and stability. These thermally treated starch-based blends increased the appetite of mice, promoted food digestion, and enhanced postprandial glucose response. Normal C57BL/6J mice were treated with boiled, baked, and fried starch-based diets for ten weeks. Compared to the baked and fried starch-based diets, the boiled starch-based diet significantly (p < 0.05) elevated random blood glucose levels and disrupted insulin homeostasis, primarily due to the remarkable decrease in gut microbial diversity. Both baked and fried starch-based diets resulted in relatively high intestinal epithelial permeability (plasma lipopolysaccharide increased by 28.67 % and 21.85 %, respectively). They adversely affected islet β-cell function and evoked glucose metabolism disorder. Overall, results demonstrate a clear connection among the thermal processing of starch-based diets, disruption of intestinal homeostasis, and adverse glucose metabolism. This study lays a theoretical foundation for the formulation of food processing strategies to mitigate the adverse effects of thermally treated food on glucose homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122795DOI Listing

Publication Analysis

Top Keywords

thermally processed
8
glucose homeostasis
8
thermal treatments
8
starch-based blends
8
baked fried
8
fried starch-based
8
starch-based diets
8
starch-based
6
processed rice
4
rice starch
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!