Sepsis-induced Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) pose life-threatening risks due to an excessive activation of proinflammatory cytokines via the JAK pathway. Currently, no confirmed drug treatment exists for ALI. In this study, we explored JAK1 as a potential therapeutic target to address this issue. This study evaluates lapachol, a bioactive secondary metabolite, for its potential in treating sepsis-induced Acute Lung Injury (ALI). Lapachol was selected based on in-silico analyses such as binding energy, RMSD, RMSF, H-bond graphs, and lig plots supported the hypothesis that Lapachol binds to JAK1 in a manner similar to Tofacitinib JAK1/3 inhibitor (Positive control). Lapachol, derived from the heartwood of Tecomella undulata, was used in this investigation. Swiss albino mice were categorized into control, LPS treated, positive control (Tofacitinib), and experimental groups (Lapachol at 20 and 40 mg/kg doses). Throughout the experiment, mice behaviour was monitored, and euthanasia was performed at 12 and 24-h intervals. Various analyses, including body weight, W/D ratio, lung weight/body weight ratio, flow cytometry of BAL fluid (at 12 and 24 h), histology, myeloperoxidase assays were performed. Results indicated that both Tofacitinib and Lapachol significantly reduced ALI markers, including lung weight/body weight ratio, cell counts, and granulocytes in bronchoalveolar lavage fluid. Moreover, histopathology and MPO analysis suggested that Lapachol, particularly at 40 mg/kg, exhibited anti-inflammatory effects comparable to Tofacitinib. Conclusively, the findings suggest that Lapachol possesses the potential to inhibit JAK1 kinase domains and mitigate ALI associated with sepsis similar to Tofacitinib.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2024.106298DOI Listing

Publication Analysis

Top Keywords

sepsis-induced acute
12
acute lung
12
lung injury
12
injury ali
8
lapachol
8
positive control
8
lapachol 40 mg/kg
8
lung weight/body
8
weight/body weight
8
weight ratio
8

Similar Publications

Microglial activation and neuroinflammation in acute and chronic cognitive deficits in sepsis.

Neuropharmacology

December 2024

School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2.

Sepsis is characterised by dysregulated immune responses to infection, leading to multi-organ dysfunction and high rates of mortality. With increasing survival rates in recent years long-term neurological and psychiatric consequences have become more apparent in survivors. Many patients develop sepsis associated encephalopathy (SAE) which encompasses the profound but usually transient neuropsychiatric syndrome delirium but also new brain injury that emerges in the months and years post-sepsis.

View Article and Find Full Text PDF

The role of TBC1D15 in sepsis-induced acute lung injury: Regulation of mitochondrial homeostasis and mitophagy.

Int J Biol Macromol

December 2024

Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China. Electronic address:

Mitochondrial quality control is crucial in sepsis-induced acute lung injury (SI-ALI). Our study investigates how the intracellular protein TBC1D15 regulates mitochondrial quality to improve SI-ALI. We found TBC1D15 levels significantly decreased in the whole blood of sepsis patients, monocytes, lung tissue from SI-ALI mice, and the MLE-12 cellular model (mouse lung epithelial cells).

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Objective: Ferroptosis has been described in association with acute kidney injury (AKI)-induced sepsis. Fibronectin type III domain containing protein 5 (FNDC5)/irisin plays a crucial role in renal protection. The objective of this study was to investigate whether FNDC5/irisin is involved in AKI-induced sepsis by modulating ferroptosis, and the molecular mechanisms that may be involved.

View Article and Find Full Text PDF

Downregulation of the immunoproteasome subunit PSMB8 attenuates sepsis-associated acute kidney injury through the NF-κB pathway.

Immunobiology

December 2024

Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China. Electronic address:

Sepsis-associated acute kidney injury (S-AKI) is a prevalent and life-threatening complication in hospitalized and critically ill patients. Recent researches indicates that immunoproteasome, especially proteasome 20S subunit beta 8 (PSMB8), is highly associated with various kidney diseases. This study aims to investigate the potential involvement of PSMB8 in S-AKI and its impact on apoptosis and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!