Biodegradable intravascular stents offer a promising alternative to permanent stents for treating atherosclerosis-related artery narrowing by potentially avoiding long-term complications. Identifying materials that degrade harmlessly and uniformly at a suitable rate is crucial. This study evaluated an advanced zinc alloy (Zn-Ag-Cu-Mn-Zr) alongside pure iron and pure zinc, using a simplified stent model of metallic wires implanted in the rat aorta. Assessments were made at 7, 24, and 84 days post-implantation using X-ray microfocus computed tomography (microCT) and contrast-enhanced microCT (CECT). For CECT, a contrast agent was chosen to provide optimal soft tissue contrast and minimal interaction with the wires. This combination of imaging techniques allowed us to evaluate degradation behavior, compare volume loss in various locations (outside the arterial lumen, inside the lumen, and encapsulated by neointima), compute degradation rates, and evaluate neointima tissue formation. Results showed that zinc and its alloy degrade less uniformly than iron, which demonstrates uniform surface degradation. The zinc alloy had a higher initial volume loss than the other materials but showed little increase over time. Neointima formation was similar for zinc and the zinc alloy, while iron provoked less tissue formation than both zinc and the reference cobalt-chromium alloy. Additionally, unlike cobalt-chromium and zinc, iron wires did not achieve consistent tissue encapsulation along their entire length, which may impair their performance. Mild inflammation was noted around zinc-based implants. Combining microCT and CECT provided 3D information on degradation uniformity, degradation products, and neointima morphometrics, highlighting the power of these imaging techniques to evaluate implant materials in a highly accurate way compared to previous 2D methods. STATEMENT OF SIGNIFICANCE: Biodegradable intravascular stents offer a promising solution to long-term complications associated with permanent stents by gradually dissolving in the body. To evaluate a novel zinc alloy (Zn-Ag-Cu-Mn-Zr) with improved mechanical properties, microstructure, and biocompatibility, we compared it to pure iron and zinc. We used advanced 3D imaging techniques, i.e., microCT and contrast-enhanced microCT, to assess the degradation behavior and the tissue response in a rat aorta model. The zinc alloy demonstrated promising properties despite less uniform degradation and mild inflammation compared to iron. Our findings highlight the superiority of 3D imaging over previously used 2D techniques in evaluating stent materials, offering critical insights into degradation processes and biocompatibility. These highly accurate measurements provide crucial information for developing improved biodegradable implants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670001 | PMC |
http://dx.doi.org/10.1016/j.actbio.2024.11.017 | DOI Listing |
Small
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.
View Article and Find Full Text PDFSmall
January 2025
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.
Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain.
This review explores the advancements in additive manufacturing (AM) of biodegradable iron (Fe) and zinc (Zn) alloys, focusing on their potential for medical implants, particularly in vascular and bone applications. Fe alloys are noted for their superior mechanical properties and biocompatibility but exhibit a slow corrosion rate, limiting their biodegradability. Strategies such as alloying with manganese (Mn) and optimizing microstructure via laser powder bed fusion (LPBF) have been employed to increase Fe's corrosion rate and mechanical performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Photonics and Nanoelectronics, and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.
Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran.
Hydroxyapatite (HA) is an engineered biomaterial that closely resembles the hard tissue composition of humans. Biological HA is commonly non-stoichiometric and features lower crystallinity and higher solubility than stoichiometric HA. The chemical compositions of these biomaterials include calcium (Ca), phosphorus (P), and trace amounts of various ions such as magnesium (Mg), zinc (Zn), and strontium (Sr).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!