Brain drug delivery from the nasal olfactory region is enhanced using lauroylcholine chloride: An estimation using in vivo PET imaging.

Nucl Med Biol

Molecular Imaging Laboratory, Division of Preeminent Bioimaging Research, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Japan. Electronic address:

Published: December 2024

Introduction: Intranasal (IN) administration, often referred to as nose-to-brain (N2B) drug delivery, is an attractive approach for delivering drugs to the central nervous system. However, the efficacy of this method is limited because of the small size of the nasal olfactory region, which limits the drug dosage. Using permeation enhancers could improve drug delivery from this region to the brain, though their effects are not fully understood. We therefore investigated the effects of co-administration of permeation enhancers on N2B drug delivery of a model drug domperidone, a peripherally acting dopamine D2 receptor (D2R) blocker.

Methods: We conducted in vitro permeability assays to evaluate the effects of sodium lauryl sulfate (SLS), a classical permeation enhancer, and lauroylcholine chloride (LCC) on domperidone permeation in human nasal mucosa-derived cells. We also used the D2R ligand [C]raclopride to assess the in vivo effects of LCC on domperidone delivery in the rat brain using a positron emission tomography (PET) competition paradigm. In comparative PET experiments, we tested the effects of intravenously administered domperidone without LCC co-administration.

Results: LCC effectively improved nasal mucosal permeation of domperidone in vitro compared to SLS. In rat IN administration experiments, striatal [C]raclopride uptake was significantly decreased by the addition of LCC to domperidone. On the other hand, intravenously administered domperidone with or without intranasally administered LCC did not decrease [C]raclopride brain uptake, suggesting a lesser influence of peripheral domperidone on [C]raclopride brain uptake. PET studies showed that striatal D2R occupancy of domperidone was increased 2.4-fold by co-administration of LCC.

Conclusion: LCC effectively enhances the domperidone delivery from the rat olfactory region to the brain, probably not via a circulating blood. The combination of permeation enhancers and olfactory region-selective drug administration could be effective for N2B drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nucmedbio.2024.108968DOI Listing

Publication Analysis

Top Keywords

drug delivery
20
olfactory region
12
n2b drug
12
permeation enhancers
12
lcc domperidone
12
domperidone
10
nasal olfactory
8
lauroylcholine chloride
8
region brain
8
domperidone delivery
8

Similar Publications

Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.

View Article and Find Full Text PDF

Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing.

Expert Opin Drug Deliv

January 2025

Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.

Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, chimericantigen receptor T  (CAR T) celltherapies and protein replacement.  mRNAis large, charged, and easily degraded by nucleases.

View Article and Find Full Text PDF

Introduction: This analysis aimed to investigate diabetes-specific psychological outcomes among adults with type 1 diabetes (T1D) using hybrid closed-loop (HCL) versus standard therapy.

Research Design And Methods: In this multicenter, open-label, randomized, controlled, parallel-group clinical trial, adults with T1D were allocated to 26 weeks of HCL (MiniMed™ 670G) or standard therapy (insulin pump or multiple daily injections without real-time continuous glucose monitoring). Psychological outcomes (awareness and fear of hypoglycemia; and diabetes-specific positive well-being, diabetes distress, diabetes treatment satisfaction, and diabetes-specific quality of life (QoL)) were measured at enrollment, mid-trial and end-trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!