Cystic Fibrosis (CF) results from the loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR), an ion channel of key importance in the airway epithelia. CFTR helps control optimal hydration of the airways, a crucial requirement for healthy lungs. CFTR modulators have recently been approved as an effective treatment option for many genetic variants of CF. The epithelial sodium channel (ENaC), unlike CFTR which is secretory, is an absorptive pathway, and therefore its inhibition is an alternative and potentially complementary approach to aid hydration of the airways. Due to the adverse effect of ENaC inhibition in the kidney we, as have several others, focused on the design and synthesis of novel ENaC inhibitors for direct delivery to the airways via inhalation. A new series of ENaC inhibitors is described, wherein the well-established pyrazine core of first-generation inhibitors was replaced with a pyrrolopyrazine. Aiming for high retention at the surface of the lung following inhalation, optimisation of this template focused on significantly increasing polarity to minimize passive cellular permeability. The resulting optimized clinical candidate ETD001 demonstrates potent inhibition of ENaC (59 nM) prolonged retention in the airways of rats (13 % of the delivered dose retained after 6h) following intratracheal administration and a potent and long-acting effect in a sheep model of mucociliary clearance following inhalation (ED (4-6h) = 9 μg/kg). ETD001 entered a phase II study in CF patients in July 2024.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2024.117040 | DOI Listing |
Endocr J
November 2024
Department of Pediatrics, Kagoshima University Hospital, Kagoshima 890-8520, Japan.
Liddle syndrome (LS) is an autosomal dominant genetic disorder characterized by early onset hypertension, hypokalemia, and low plasma aldosterone or renin concentration. It is caused by mutations in subunits of the epithelial sodium channel (ENaC). The clinical phenotypes of LS are variable and nonspecific, making it prone to both misdiagnosis and missed diagnosis.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Enterprise Therapeutics, Sussex Innovation Centre, University of Sussex, Science Park Square, Falmer, Brighton, BN1 9SB, United Kingdom. Electronic address:
Cystic Fibrosis (CF) results from the loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR), an ion channel of key importance in the airway epithelia. CFTR helps control optimal hydration of the airways, a crucial requirement for healthy lungs. CFTR modulators have recently been approved as an effective treatment option for many genetic variants of CF.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
October 2024
Medical College of Georgia, Vascular Biology Center, Pharmacology and Toxicology, Pulmonary, Critical Care Medicine, Augusta, Georgia, United States;
Infection of lung endothelial cells with pneumococci activates the superoxide-generating enzyme NADPH oxidase 2 (NOX2), involving the pneumococcal virulence factor pneumolysin (PLY). Excessive NOX2 activity disturbs capillary barriers, but its global inhibition can impair bactericidal phagocyte activity during pneumococcal pneumonia. Depletion of the α subunit of the epithelial sodium channel (ENaC) in pulmonary endothelial cells increases expression and PMA-induced activity of NOX2.
View Article and Find Full Text PDFFront Immunol
September 2024
Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.
ERJ Open Res
July 2024
Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!