Scientific assessments of the supply, demand and flow of ecosystem services and the formulation of ecological compensation policies are important for the promotion of sustainable regional development. Based on the supply-demand ratio model, breakpoint model, field strength model, geographic information system spatial analysis and statistical methods, we assessed the supply, demand and supply-demand relationships of carbon sequestration services on the Loess Plateau for 2000, 2010 and 2020. We also analyzed the interregional flow of carbon sequestration services at multiple scales and accounted for horizontal ecological compensation. The results revealed that from 2000 to 2020, both the supply and demand of carbon sequestration services increased, with a greater increase in demand. The high-supply areas were mostly in the central and northwestern parts of the Loess Plateau, and the high-demand areas were mostly in areas other than the central part. The supply-demand ratio for carbon sequestration services declined, with a large increase in the number of deficit counties and surplus counties, mostly in the central and western parts of the study area. The flow rates of carbon sequestration services within the Loess Plateau increased. The intercounty flow rates within the same city were the highest but decreased. Decreasing intercity flow rates appeared within the same province although they initially increased. Finally, interprovincial flow rates were the lowest, but they were increasing. The outflow of carbon sequestration services from the Loess Plateau to external regions was greater than the inflow from external regions, but the outflow decreased in 2020 compared with 2010, while the inflow from external regions increased. Most cities actually received or paid less ecological compensation than that accounted for based on the basis of flow rates after considering willingness to pay and ability to pay. Moreover, the number and total compensation of cities receiving ecological compensation were greater than the number and total compensation of payers in the 44 cities within the Loess Plateau. This study provides a theoretical basis for not only understanding the spatial transfer patterns of ecosystem services at multiple scales but also formulating ecological compensation policies, thereby promoting the realization of regional sustainable development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123396 | DOI Listing |
Natl Sci Rev
February 2025
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
Climate warming may induce substantial changes in the ecosystem carbon cycle, particularly for those climate-sensitive regions, such as alpine grasslands on the Tibetan Plateau. By synthesizing findings from warming experiments, this review elucidates the mechanisms underlying the impacts of experimental warming on carbon cycle dynamics within these ecosystems. Generally, alterations in vegetation structure and prolonged growing season favor strategies for enhanced ecosystem carbon sequestration under warming conditions.
View Article and Find Full Text PDFEnviron Microbiol Rep
February 2025
Department of Biology, University of Regina, Regina, Saskatchewan, Canada.
Prairie wetland ponds on the Great Plains of North America offer a diverse array of geochemical scenarios that can be informative about their impact on microbial communities. These ecosystems offer invaluable ecological services while experiencing significant stressors, primarily through drainage and climate change. In this first study systematically combining environmental conditions with microbial community composition to identify various niches in prairie wetland ponds, sediments had higher microbial abundance but lower phylogenetic diversity in ponds with lower concentrations of dissolved organic carbon ([DOC]; 10-18 mg/L) and sulfate ([SO ]; 37-58 mg/L) in water.
View Article and Find Full Text PDFSci Rep
January 2025
U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA, 70506, USA.
Blue carbon refers to organic carbon sequestered by oceanic and coastal ecosystems. This stock has gained global attention as a high organic carbon repository relative to other ecosystems. Within blue carbon ecosystems, tidally influenced wetlands alone store a disproportionately higher amount of organic carbon than other blue carbon systems.
View Article and Find Full Text PDFBioresour Technol
January 2025
National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China. Electronic address:
The combination of hematite and biochar significantly accelerated tetracycline (TC) removal under visible light irradiation. The k of TC removal with Hem/BC-5 reached 0.103 min, 3.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India.
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!