A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Variations of soil infiltration in response to vegetation restoration and its influencing factors on the Loess Plateau. | LitMetric

AI Article Synopsis

  • Soil infiltration is vital for plant water needs, especially in semi-arid areas like the Loess Plateau, but its responses to vegetation restoration types are not well understood.
  • This study investigates how different revegetation methods impact soil infiltration through field experiments with nine plant species across five restoration types, finding that artificial forests and natural grasslands improved soil properties significantly.
  • Results revealed that increased root characteristics from vegetation restoration boosted soil stability and porosity, leading to higher infiltration rates, with soil particle size and porosity being key predictors of these enhanced properties.

Article Abstract

Soil infiltration is essential in the hydrological cycle, fulfilling plant water requirements, particularly in semi-arid regions such as the Loess Plateau. However, comprehensive characterization of soil infiltration responses to different vegetation restoration types remains unclear. Therefore, this study aims to examine the effects of revegetation on soil infiltration by conducting field experiments with nine representative plant species across five vegetation restoration types. Specifically, we focused on how revegetation affects soil and root properties to determine key factors impacting soil infiltration. The results showed that artificial forestland and natural grassland exhibited the most substantial effects on soil properties. Natural grassland exhibited the highest soil aggregate stability and organic matter content. Root length density and root surface area increased after vegetation restoration, most notably in artificial forestland. Root characteristics were positively correlated with aggregate stability, soil organic matter, and porosity. An increase in root surface area significantly enhanced the steady infiltration rate and saturated hydraulic conductivity (P < 0.01). Except for economic forestland, all types of vegetation restoration improved soil infiltration properties, especially notable in Artemisia sacrorum and Platycladus orientalis. The soil infiltration properties in forestland surpassed those in natural grassland, artificial grassland, and shrubland. Random Forest Regression (RFR) suggested that soil particle size, porosity, and aggerate stability were key predictors of soil infiltration properties. Partial least squares structural equation modeling (PLS-SEM) indicated that soil infiltration rates were altered by root-mediated changes in soil porosity. Additionally, soil organic matter exerts an indirect positive effect on infiltration rates by influencing soil aggregate stability. These findings are crucial for evaluating hydrological processes and devising more effective ecological restoration and soil and water conservation strategies in the Loess Plateau.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123356DOI Listing

Publication Analysis

Top Keywords

soil infiltration
20
vegetation restoration
16
loess plateau
8
soil
8
restoration types
8
revegetation soil
8
artificial forestland
8
natural grassland
8
grassland exhibited
8
aggregate stability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!