Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biomass wastes (BW) can be used to produce value-added products by multiple energy recovery technologies. However, the actual conversion results are unsatisfactory since heterogeneous feedstocks mixture with different characteristics are hard to optimally recovered in the same fine conversion process. This paper aimed to develop a new method to improve the energy conversion efficiencies, which focused on the rational matching of BW characteristics and demand for highly efficient energy recovery. Accordingly, this paper explored the correlation between BW representative characteristics and energy conversion efficiencies. The results showed that BW types with different characteristics had significant correlation with multiple utilization technologies (P value < 0.05). Existing BW sorting methods based on source/density showed limited promotion on downstream utilization since the large diversity of characteristics within groups. Furthermore, to assist efficient energy conversion of BW, a novel BW sorting mode, different from traditional manual and mechanical sorting methods, was established to achieve the matching between feedstocks and utilization technologies. The chemical properties, containing elemental composition and heating value, were selected as BW sorting criterion. According to new sorting categories, the fuel characteristics, reaction conditions and products performance in terms of its energy conversion process have more significant differences between groups than traditional sorting methods. The energy conversion efficiency can be improved by 10.71% than unsorted as least. The new BW sorting method towards efficient downstream energy recovery has feasibility in industrial applications. The future perspectives were also discussed. This work was helpful to improve the downstream energy utilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123311 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!