We present enhancements in Monte Carlo simulation speed and functionality within an open-source code, gRASPA, which uses graphical processing units (GPUs) to achieve significant performance improvements compared to serial, CPU implementations of Monte Carlo. The code supports a wide range of Monte Carlo simulations, including canonical ensemble (NVT), grand canonical, NVT Gibbs, Widom test particle insertions, and continuous-fractional component Monte Carlo. Implementation of grand canonical transition matrix Monte Carlo (GC-TMMC) and a novel feature to allow different moves for the different components of metal-organic framework (MOF) structures exemplify the capabilities of gRASPA for precise free energy calculations and enhanced adsorption studies, respectively. The introduction of a High-Throughput Computing (HTC) mode permits many Monte Carlo simulations on a single GPU device for accelerated materials discovery. The code can incorporate machine learning (ML) potentials, and this is illustrated with grand canonical Monte Carlo simulations of CO adsorption in Mg-MOF-74 that show much better agreement with experiment than simulations using a traditional force field. The open-source nature of gRASPA promotes reproducibility and openness in science, and users may add features to the code and optimize it for their own purposes. The code is written in CUDA/C++ and SYCL/C++ to support different GPU vendors. The gRASPA code is publicly available at https://github.com/snurr-group/gRASPA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.4c01058 | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry, Rice University, Houston, Texas 77005-1892, United States.
Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely and . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
Radiation therapy (RT) is widely used for cancer treatment but is found with side effects of radiation dermatitis and fibrosis thereby calling for timely assessment. Nevertheless, current clinical assessment methods are found to be subjective, prone to bias, and accompanied by variability. There is, therefore, an unmet clinical need to explore a new assessment technique, ideally portable and affordable, making it accessible to less developed regions too.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Optical coherence tomography angiography (OCTA) offers unparalleled capabilities for non-invasive detection of vessels. However, the lack of accurate models for light-tissue interaction in OCTA jeopardizes the development of the techniques to further extract quantitative information from the measurements. In this manuscript, we propose a Monte Carlo (MC)-based simulation method to precisely describe the signal formation of OCTA based on the fundamental theory of light-tissue interactions.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
Many human diseases result from a complex interplay of behavioral, clinical, and molecular factors. Integrating low-dimensional behavioral and clinical features with high-dimensional molecular profiles can significantly improve disease outcome prediction and diagnosis. However, while some biomarkers are crucial, many lack informative value.
View Article and Find Full Text PDFOptical polarization is three-dimensional (3-D). Its complete information is described by the nine-component generalized Stokes vector (GSV). However, existing Stokes polarimetry and its design theory are primarily based on the paraxial four-component Stokes vector and 4 × 4 Mueller matrices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!