A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Importance of Electron Correlation on the Geometry and Electronic Structure of [2Fe-2S] Systems: A Benchmark Study of the [FeS(SCH)], [FeS(SCys)], [FeS(S--tol)], and [FeS(S--xyl)] Complexes. | LitMetric

Importance of Electron Correlation on the Geometry and Electronic Structure of [2Fe-2S] Systems: A Benchmark Study of the [FeS(SCH)], [FeS(SCys)], [FeS(S--tol)], and [FeS(S--xyl)] Complexes.

J Chem Theory Comput

Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, P.O. Box 999, MS J7-10, Richland, Washington 99352, United States.

Published: December 2024

Iron-sulfur clusters are crucial for biological electron transport and catalysis. Obtaining accurate geometries, energetics, manifolds of their excited electronic states, and reduction energies is important to understand their role in these processes. Using a [2Fe-2S] model complex with Fe and Fe oxidation states, which leads to different charges, i.e., [FeS(SMe)], we benchmarked a variety of computational methodologies ranging from density functional theory (DFT) to post-Hartree-Fock methods, including complete active space self-consistent field (CASSCF), multireference configuration interaction, the second-order N-electron valence state perturbation theory (NEVPT2), and the linearized integrand approximation of adiabatic connection (AC0) approaches. Additionally, we studied three experimentally well-characterized complexes, [FeS(SCys)], [FeS(S--tol)], and [FeS(S--xyl)], via DFT methods. We conclude that the dynamic electron correlation is important for accurately predicting the geometry of these complexes. Broken symmetry (BS) DFT correctly predicts experimental geometries of low-spin multiplicity, while CASSCF does not. However, BS-DFT significantly overestimates the difference between the low- and high-spin electronic states for a given oxidation state. At the same time, CASSCF underestimates it but provides relative energies closer to the reference NEVPT2 results. Finally, AC0 provides energetics of NEVPT2 quality with the additional advantage of being able to use large CASSCF sizes. NEVPT2 gives the best estimates of the Fe/Fe → Fe/Fe (4.27 eV) and Fe/F → Fe/F (7.72 eV) reduction energies. The results provide insight into the electronic structure of these complexes and assist in the understanding of their physical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00781DOI Listing

Publication Analysis

Top Keywords

electron correlation
8
electronic structure
8
[fesscys] [fess--tol]
8
[fess--tol] [fess--xyl]
8
electronic states
8
reduction energies
8
correlation geometry
4
electronic
4
geometry electronic
4
structure [2fe-2s]
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!