A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coptisine inhibits lipid accumulation in high glucose- and palmitic acid-induced HK-2 cells by regulating the AMPK/ACC/CPT-1 signaling pathway. | LitMetric

Coptisine inhibits lipid accumulation in high glucose- and palmitic acid-induced HK-2 cells by regulating the AMPK/ACC/CPT-1 signaling pathway.

Naunyn Schmiedebergs Arch Pharmacol

Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China.

Published: November 2024

AI Article Synopsis

  • AMPK is crucial for managing energy balance by regulating enzymes involved in fatty acid metabolism.
  • Coptisine (COP), a compound from a traditional Chinese herb, reduces fat accumulation in kidney cells exposed to high glucose and fatty acids, showing promising dose-dependent effects.
  • COP enhances the AMPK pathway, supporting fat oxidation and inhibiting fat production, which could have clinical applications for treating lipid-related disorders.

Article Abstract

AMPK (Adenosine 5'-Monophosphate activated Protein Kinase) functions as a fundamental regulator of glycolipid metabolism by regulating the rate-limiting enzyme activity of ACC (Acetyl-CoA Carboxylase, essential for fatty acid biosynthesis) and CPT-1 (Carnitine palmitoyltransferase-1, essential for mitochondrial fatty acid oxidation, FAO) in cells, which is crucial for maintaining energy homeostasis in the human body. Coptisine (COP) is a natural berberine and isoquinoline alkaloid in Coptis chinensis that has been used as a traditional Chinese herb to treat diabetes for thousands of years, but its mechanism of action is still unclear. In this study, we investigated the anti-lipid accumulation effect and mechanism of COP in high glucose and palmitic acid-induced HK-2 cells. Compared with the control HK-2 cells, the model HK-2 cells exhibited markedly greater lipid deposition, after treatment with high glucose (HG, 30 mM) and palmitic acid (PA, 250 µM) for 24 h. However, COP significantly decreased the TC and TG levels in a dose dependent manner (2.5, 5, and 10 µM). Moreover, COP dramatically enhanced the effect of the positive control (AICAR, Acadesine, an AMPK activator) in alleviating lipid deposition, which was reversed by the negative control (Compound C, an AMPK inhibitor). Furthermore, COP also increased p-AMPK, p-ACC and CPT-1 protein expression. Our results indicate that COP can effectively protects HK-2 cells against HG- and PA-induced lipid accumulation by affecting the AMPK/ACC/CPT-1 signaling pathway, inhibiting de novo lipogenesis and enhancing the FAO processes, which offers novel insights for the application of COP in the clinic.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-024-03617-3DOI Listing

Publication Analysis

Top Keywords

hk-2 cells
20
lipid accumulation
8
palmitic acid-induced
8
acid-induced hk-2
8
ampk/acc/cpt-1 signaling
8
signaling pathway
8
fatty acid
8
high glucose
8
glucose palmitic
8
lipid deposition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!