Accurate models of muscle contraction are necessary for understanding muscle performance and the molecular modifications that enhance it (e.g., therapeutics, posttranslational modifications, etc.). As a thermal system containing millions of randomly fluctuating atoms that on the thermal scale of a muscle fiber generate unidirectional force and power output, muscle mechanics are constrained by the laws of thermodynamics. According to a thermodynamic muscle model, muscle's power stroke occurs with the shortening of an entropic spring consisting of an ensemble of force-generating myosin motor switches, each induced by actin binding and gated by inorganic phosphate release. This model differs fundamentally from conventional molecular power stroke models that assign springs to myosin motors in that it is physically impossible to describe an entropic spring in terms of the springs of its molecular constituents. A simple two-state thermodynamic model (a binary mechanical system) accurately accounts for muscle force-velocity relationships, force transients following rapid mechanical and chemical perturbations, and a thermodynamic work loop. Because this model transforms our understanding of muscle contraction, it must continue to be tested. Here, we show that a simple stochastic kinetic simulation of isometric muscle force predicts four phases of a force-generating loop that bifurcates between periodic and stochastic beating through mechanisms framed by two thermodynamic equations. We compare these model predictions with experimental data including observations of spontaneous oscillatory contractions (SPOCs) in muscles and periodic force generation in small myosin ensembles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577438 | PMC |
http://dx.doi.org/10.1085/jgp.202313493 | DOI Listing |
J Orofac Orthop
January 2025
Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Department of Orthodontics, College and Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, 530021, Nanning, Guangxi, China.
Purpose: Interleukin (IL)-17 expression in the periodontal ligament is associated with orthodontically induced inflammatory root resorption (OIIRR). Seeking a convenient, rapid, and non-invasive IL-17 detection approach could help predict OIIRR. In this study, we assessed the potential of the IL-17 level in gingival crevicular fluid (GCF) to be an indicator of OIIRR.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
ATP synthase is a rotary motor enzyme that drives the formation of ATP from ADP and P and uses multiple electrical forces to do this. This chapter outlines the exquisite use of these electrical forces to generate the high energy phosphates on which all our lives depend. Vacuolar ATPases and the ADP/ATP carrier also are explored.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Once multicellularity was thriving, a key development involved the emergence of epithelial layers that separated "inside" from "outside". Most epithelia then generate their own transepithelial electrical signals. So electrical forces were instrumental in the development of epithelial tissues, which themselves generate further electrical signals.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: High-field magnetic resonance imaging (MRI) is a powerful diagnostic tool but can induce unintended physiological effects, such as nystagmus and dizziness, potentially compromising the comfort and safety of individuals undergoing imaging. These effects likely result from the Lorentz force, which arises from the interaction between the MRI's static magnetic field and electrical currents in the inner ear. Yet, the Lorentz force hypothesis fails to explain observed eye movement patterns in healthy adults fully.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
The ability to perform mathematical computations using metastructures is an emergent paradigm that carries the potential of wave-based analog computing to the realm of near-speed-of-light, low-loss, compact devices. We theoretically introduce and experimentally verify the concept of a reconfigurable metastructure that performs analog complex mathematical computations using electromagnetic waves. Reconfigurable, RF-based components endow our device with the ability to perform stationary and non-stationary iterative algorithms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!