Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Realizing ratiometric thermometers using single-component organic solid-state luminophores is attractive but challenging. Here, we synthesized a series of N,C-chelated tetra-coordinated organoboron compounds and characterized their structures. Among them, sample can be used as a luminescent thermometer and exhibits a high temperature sensitivity (3.67% K), a wide response range of 120-280 K, and good reversibility, which is mainly due to the temperature-dependent intermolecular stacking effect in the solid state. The proposed ratiometric thermometry protocol may provide new insights for developing photonic thermometers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c02635 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!