Cancer cells exploit a mesenchymal-like transcriptional state (MLS) to survive drug treatments. Although the MLS is well characterized, few therapeutic vulnerabilities targeting this program have been identified. Here, we systematically identify the dependency network of mesenchymal-like cancers through an analysis of gene essentiality scores in ~800 cancer cell lines, nominating a poorly studied kinase, PKN2, as a top therapeutic target of the MLS. Co-essentiality relationships, biochemical experiments, and genomic analyses of patient tumors revealed that PKN2 promotes mesenchymal-like cancer growth through a PKN2-SAV1-TAZ signaling mechanism. Notably, pairing genetic PKN2 inhibition with clinically relevant targeted therapies against EGFR, KRAS, and BRAF oncogenes suppresses drug resistance by depleting mesenchymal-like drug-tolerant persister cells. These findings provide evidence that PKN2 is a core regulator of the Hippo tumor suppressor pathway and highlight the potential of PKN2 inhibition as a generalizable therapeutic strategy to overcome drug resistance driven by the MLS across cancer contexts.

Download full-text PDF

Source
http://dx.doi.org/10.1158/2159-8290.CD-24-0928DOI Listing

Publication Analysis

Top Keywords

mesenchymal-like cancer
8
cancer cell
8
pkn2 inhibition
8
drug resistance
8
pkn2
6
mesenchymal-like
5
cancer
5
pkn2 dependency
4
dependency mesenchymal-like
4
cell state
4

Similar Publications

Epithelial-to-mesenchymal transitions (EMT) and unjamming transitions provide two distinct pathways for cancer cells to become invasive, but it is still unclear to what extent these pathways are connected. Here, we addressed this question by performing 3D spheroid invasion assays on epithelial-like (A549) and mesenchymal-like (MV3) cancer cell lines in collagen-based hydrogels, where we varied both the invasive character of the cells and matrix porosity. We found that the onset time of invasion was correlated with the matrix porosity and vimentin levels, while the spheroid expansion rate correlated with MMP1 levels.

View Article and Find Full Text PDF

The inherent heterogeneity of tumor cells impedes the development of targeted therapies for specific glioblastoma (GBM) subtypes. This study aims to investigate the mesenchymal subtype of GBM to uncover detailed characteristics, potential therapeutic strategies, and improve precision treatment for GBM patients. We integrated single-cell RNA sequencing (scRNA-seq), single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), and bulk RNA sequencing datasets to identify core gene modules, candidate therapeutic drugs, and key transcription factors specific to mesenchymal subtype GBM tumor cells which we validated in vitro and human samples.

View Article and Find Full Text PDF

HDAC7 drives glioblastoma to a mesenchymal-like state via LGALS3-mediated crosstalk between cancer cells and macrophages.

Theranostics

December 2024

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China.

Article Synopsis
  • * The study focuses on the role of HDAC7 in regulating SOX8 expression, which influences the secretion of LGALS3, creating a feedback loop that promotes the aggressive mesenchymal phenotype of GBM and M2 polarization of macrophages.
  • * Findings suggest that targeting LGALS3 can enhance the effectiveness of HDAC inhibitors, positioning HDAC7 and LGALS3 as potential new biomarkers and therapeutic targets for GBM treatment.
View Article and Find Full Text PDF

Cancer-intrinsic immune evasion mechanisms and pleiotropy are a barrier to cancer immunotherapy. This is apparent in certain highly fatal cancers, including high-grade gliomas and glioblastomas (GBM). In this study, we evaluated two murine syngeneic glioma models (GL261 and CT2A) as preclinical models for human GBM using functional genetic screens, single-cell transcriptomics and machine learning approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!