Cancer cells exploit a mesenchymal-like transcriptional state (MLS) to survive drug treatments. Although the MLS is well characterized, few therapeutic vulnerabilities targeting this program have been identified. Here, we systematically identify the dependency network of mesenchymal-like cancers through an analysis of gene essentiality scores in ~800 cancer cell lines, nominating a poorly studied kinase, PKN2, as a top therapeutic target of the MLS. Co-essentiality relationships, biochemical experiments, and genomic analyses of patient tumors revealed that PKN2 promotes mesenchymal-like cancer growth through a PKN2-SAV1-TAZ signaling mechanism. Notably, pairing genetic PKN2 inhibition with clinically relevant targeted therapies against EGFR, KRAS, and BRAF oncogenes suppresses drug resistance by depleting mesenchymal-like drug-tolerant persister cells. These findings provide evidence that PKN2 is a core regulator of the Hippo tumor suppressor pathway and highlight the potential of PKN2 inhibition as a generalizable therapeutic strategy to overcome drug resistance driven by the MLS across cancer contexts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/2159-8290.CD-24-0928 | DOI Listing |
iScience
December 2024
Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands.
Epithelial-to-mesenchymal transitions (EMT) and unjamming transitions provide two distinct pathways for cancer cells to become invasive, but it is still unclear to what extent these pathways are connected. Here, we addressed this question by performing 3D spheroid invasion assays on epithelial-like (A549) and mesenchymal-like (MV3) cancer cell lines in collagen-based hydrogels, where we varied both the invasive character of the cells and matrix porosity. We found that the onset time of invasion was correlated with the matrix porosity and vimentin levels, while the spheroid expansion rate correlated with MMP1 levels.
View Article and Find Full Text PDFCell Biosci
December 2024
Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
The inherent heterogeneity of tumor cells impedes the development of targeted therapies for specific glioblastoma (GBM) subtypes. This study aims to investigate the mesenchymal subtype of GBM to uncover detailed characteristics, potential therapeutic strategies, and improve precision treatment for GBM patients. We integrated single-cell RNA sequencing (scRNA-seq), single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), and bulk RNA sequencing datasets to identify core gene modules, candidate therapeutic drugs, and key transcription factors specific to mesenchymal subtype GBM tumor cells which we validated in vitro and human samples.
View Article and Find Full Text PDFTheranostics
December 2024
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China.
Bone Marrow Transplant
December 2024
The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
Acta Neuropathol
November 2024
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.
Cancer-intrinsic immune evasion mechanisms and pleiotropy are a barrier to cancer immunotherapy. This is apparent in certain highly fatal cancers, including high-grade gliomas and glioblastomas (GBM). In this study, we evaluated two murine syngeneic glioma models (GL261 and CT2A) as preclinical models for human GBM using functional genetic screens, single-cell transcriptomics and machine learning approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!