Breast cancer remains a leading cause of cancer-related mortality among women, with current therapeutic approaches often limited by resistance and recurrence, especially in aggressive subtypes like triple-negative breast cancer. Drug repurposing has emerged as a promising strategy to address these challenges. In this study, we investigate the potential of Imatinib, a repurposed tyrosine kinase inhibitor, to inhibit epithelial-mesenchymal transition (EMT) in breast cancer cells by modulating the Notch signalling pathway. Our findings reveal that Imatinib treatment leads to a significant reduction in cancer cell stemness, invasiveness, and migration potential, alongside decreased colony-forming ability. EMT reversal was marked by a 2.71-fold increase in E-cadherin expression, with concurrent downregulation of mesenchymal markers, including Fibronectin (1.78-fold) and Slug (2.15-fold). Mechanistically, Imatinib was found to inhibit p300 acetyltransferase activity, resulting in reduced levels of H3K18Ac and H3K27Ac, which in turn led to the downregulation of key Notch pathway proteins such as HES1 (2.94-fold), AKT (2.08-fold), and p21 (1.88-fold). These results highlight the ability of Imatinib to suppress EMT through modulation of the Notch signalling pathway, offering a novel therapeutic avenue for breast cancer treatment. Overall, Imatinib demonstrates considerable potential for repurposing in breast cancer management by targeting critical oncogenic pathways involved in EMT and cancer progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mc.23848 | DOI Listing |
Biomed Phys Eng Express
January 2025
School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.
View Article and Find Full Text PDFJMIR Hum Factors
January 2025
New College of Florida, Sarasota, FL, United States.
Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.
View Article and Find Full Text PDFPLoS One
January 2025
Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia.
This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!