AI Article Synopsis

  • Bacteria evolve mechanisms to optimize resource competition and adapt to new environments, specifically focusing on the import of isethionate by the sulfate-reducing bacterium Oleidesulfovibrio alaskensis.
  • This species uses a TRAP transporter (OaIsePQM) to facilitate isethionate import, with OaIseP binding the substrate and delivering it to the transporter for cellular uptake.
  • The study revealed the binding affinity of isethionate to OaIseP, provided structural insights into the protein’s conformation with and without the substrate, and suggests implications for antibiotic development targeting TRAP transporters.

Article Abstract

Bacteria evolve mechanisms to compete for limited resources and survive in new niches. Here we study the mechanism of isethionate import from the sulfate-reducing bacterium Oleidesulfovibrio alaskensis. The catabolism of isethionate by Desulfovibrio species has been implicated in human disease, due to hydrogen sulfide production, and has potential for industrial applications. O. alaskensis employs a tripartite ATP-independent periplasmic (TRAP) transporter (OaIsePQM) to import isethionate, which relies on the substrate-binding protein (OaIseP) to scavenge isethionate and deliver it to the membrane transporter component (OaIseQM) for import into the cell. We determined the binding affinity of isethionate to OaIseP by isothermal titration calorimetry, KD = 0.95 µM (68% CI = 0.6-1.4 µM), which is weaker compared with other TRAP substrate-binding proteins. The X-ray crystal structures of OaIseP in the ligand-free and isethionate-bound forms were obtained and showed that in the presence of isethionate, OaIseP adopts a closed conformation whereby two domains of the protein fold over the substrate. We serendipitously discovered two crystal forms with sulfonate-containing buffers (HEPES and MES) bound in the isethionate-binding site. However, these do not evoke domain closure, presumably because of the larger ligand size. Together, our data elucidate the molecular details of how a TRAP substrate-binding protein binds a sulfonate-containing substrate, rather than a typical carboxylate-containing substrate. These results may inform future antibiotic development to target TRAP transporters and provide insights into protein engineering of TRAP transporter substrate-binding proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BCJ20240540DOI Listing

Publication Analysis

Top Keywords

trap substrate-binding
12
substrate-binding proteins
12
trap transporter
8
substrate-binding protein
8
isethionate oaisep
8
isethionate
6
substrate-binding
5
protein
5
trap
5
function trap
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!