Background: Despite advances made in targeted biomarker-based therapy for acute myeloid leukemia (AML) treatment, remission is often short and followed by relapse and acquired resistance. Functional precision medicine (FPM) efforts have been shown to improve therapy selection guidance by incorporating comprehensive biological data to tailor individual treatment. However, effectively managing complex biological data, while also ensuring rapid conversion of actionable insights into clinical utility remains challenging.

Methods: We have evaluated the clinical applicability of quadratic phenotypic optimization platform (QPOP), to predict clinical response to combination therapies in AML and reveal patient-centric insights into combination therapy sensitivities. In this prospective study, 51 primary samples from newly diagnosed (ND) or refractory/relapsed (R/R) AML patients were evaluated by QPOP following ex vivo drug testing.

Results: Individualized drug sensitivity reports were generated in 55/63 (87.3%) patient samples with a median turnaround time of 5 (4-10) days from sample collection to report generation. To evaluate clinical feasibility, QPOP-predicted response was compared to clinical treatment outcomes and indicated concordant results with 83.3% sensitivity and 90.9% specificity and an overall 86.2% accuracy. Serial QPOP analysis in a FLT3-mutant patient sample indicated decreased FLT3 inhibitor (FLT3i) sensitivity, which is concordant with increasing FLT3 allelic burden and drug resistance development. Forkhead box M1 (FOXM1)-AKT signaling was subsequently identified to contribute to resistance to FLT3i.

Conclusion: Overall, this study demonstrates the feasibility of applying QPOP as a functional combinatorial precision medicine platform to predict therapeutic sensitivities in AML and provides the basis for prospective clinical trials evaluating ex vivo-guided combination therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574777PMC
http://dx.doi.org/10.1002/cam4.70401DOI Listing

Publication Analysis

Top Keywords

precision medicine
12
functional precision
8
medicine platform
8
biological data
8
combination therapy
8
clinical
6
aml
5
combinatorial functional
4
platform rapid
4
rapid therapeutic
4

Similar Publications

A nationwide cross-sectional study in Saudi Arabia for the assessment of understanding and practices of clinicians towards personalized genetic testing.

Sci Rep

December 2024

Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.

In order to plan and facilitate the culture of personalized / precision medicine in medical practices within any healthcare institution, it is requisite for healthcare professionals like clinicians to have a clear understanding and approach towards the practices of personalized genetic testing. This nationwide cross-sectional study aimed to measure the perceptions and knowledge of clinicians towards personalized genetic testing and assess their current practices of personalized genetic testing in clinical settings through an online self-administered questionnaire in Saudi Arabia. The results of the study revealed that almost two-fifths of participants were responsible for ordering genetic tests directly (39.

View Article and Find Full Text PDF

Warfarin is the most widely used oral anticoagulant in clinical practice. The cytochrome P450 2C9 (CYP2C9), vitamin K epoxide reductase complex 1 (VKORC1), and cytochrome P450 4F2 (CYP4F2) genotypes are associated with warfarin dose requirements in China. Accurate genotyping is vital for obtaining reliable genotype-guided warfarin dosing information.

View Article and Find Full Text PDF

Theranostic drugs represent an emerging path to deliver on the promise of precision medicine. However, bottlenecks remain in characterizing theranostic targets, identifying theranostic lead compounds, and tailoring theranostic drugs. To overcome these bottlenecks, we present the Theranostic Genome, the part of the human genome whose expression can be utilized to combine therapeutic and diagnostic applications.

View Article and Find Full Text PDF

BAY 2413555 is a novel selective and reversible positive allosteric modulator of the type 2 muscarinic acetylcholine (M2) receptor, aimed at enhancing parasympathetic signaling and restoring cardiac autonomic balance for the treatment of heart failure (HF). This study tested the safety, tolerability and pharmacokinetics of this novel therapeutic option. REMOTE-HF was a multicenter, double-blind, randomized, placebo-controlled, phase Ib dose-titration study with two active arms.

View Article and Find Full Text PDF

Quantifying the regulatory potential of genetic variants via a hybrid sequence-oriented model with SVEN.

Nat Commun

December 2024

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China.

Deciphering how noncoding DNA determines gene expression is critical for decoding the functional genome. Understanding the transcription effects of noncoding genetic variants are still major unsolved problems, which is critical for downstream applications in human genetics and precision medicine. Here, we integrate regulatory-specific neural networks and tissue-specific gradient-boosting trees to build SVEN: a hybrid sequence-oriented architecture that can accurately predict tissue-specific gene expression level and quantify the tissue-specific transcriptomic impacts of structural variants across more than 350 tissues and cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!