Mild cognitive impairment (MCI) is a precursor stage of dementia characterized by mild cognitive decline in one or more cognitive domains, without meeting the criteria for dementia. MCI is considered a prodromal form of Alzheimer's disease (AD). Early identification of MCI is crucial for both intervention and prevention of AD. To accurately identify MCI, a novel multimodal 3D imaging data integration graph convolutional network (GCN) model is designed in this paper.The proposed model utilizes 3D-VGGNet to extract three-dimensional features from multimodal imaging data (such as structural magnetic resonance imaging and fluorodeoxyglucose positron emission tomography), which are then fused into feature vectors as the node features of a population graph. Non-imaging features of participants are combined with the multimodal imaging data to construct a population sparse graph. Additionally, in order to optimize the connectivity of the graph, we employed the pairwise attribute estimation (PAE) method to compute the edge weights based on non-imaging data, thereby enhancing the effectiveness of the graph structure. Subsequently, a population-based GCN integrates the structural and functional features of different modal images into the features of each participant for MCI classification.Experiments on the AD Neuroimaging Initiative demonstrated accuracies of 98.57%, 96.03%, and 96.83% for the normal controls (NC)-early MCI (EMCI), NC-late MCI (LMCI), and EMCI-LMCI classification tasks, respectively. The AUC, specificity, sensitivity, and F1-score are also superior to state-of-the-art models, demonstrating the effectiveness of the proposed model. Furthermore, the proposed model is applied to the ABIDE dataset for autism diagnosis, achieving an accuracy of 91.43% and outperforming the state-of-the-art models, indicating excellent generalization capabilities of the proposed model.This study demonstratethe proposed model's ability to integrate multimodal imaging data and its excellent ability to recognize MCI. This will help achieve early warning for AD and intelligent diagnosis of other brain neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ad8c94DOI Listing

Publication Analysis

Top Keywords

multimodal imaging
20
imaging data
20
mild cognitive
12
proposed model
12
cognitive impairment
8
graph convolutional
8
mci
8
state-of-the-art models
8
imaging
6
data
6

Similar Publications

Background: Neoadjuvant chemotherapy is standard for advanced esophageal squamous cell carcinoma, though often ineffective. Therefore, predicting the response to chemotherapy before treatment is desirable. However, there is currently no established method for predicting response to neoadjuvant chemotherapy.

View Article and Find Full Text PDF

Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the 'here and now' depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching.

View Article and Find Full Text PDF

Retinal Capillary Ischemia Following Migraine: A Case Report.

Cureus

December 2024

Department of Ophthalmology, Unidade Local de Saúde de São João, Porto, PRT.

Migraine, a neurological disorder often accompanied by symptoms such as visual disturbances, nausea, and photophobia, involves complex interactions between genetic and environmental factors, while vascular factors are also implicated, influenced by both genetic predisposition and environmental triggers. This case report discusses a 41-year-old male with a history of migraine with visual aura, presenting with sudden left-eye visual loss. Comprehensive ophthalmologic examination revealed a central scotoma, while multimodal imaging, including spectral-domain optical coherence tomography (SD-OCT), showed focal alterations in the outer plexiform layer.

View Article and Find Full Text PDF

Greater than the sum of its parts: multimodality imaging in adults with congenital heart disease.

Cardiovasc Diagn Ther

December 2024

Department of Heart, Vascular & Thoracic, Division of Cardiology & Cardiovascular Medicine - Pediatric Cardiology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.

As the population of adults with congenital heart disease (ACHD) grows, there also grows an expanded need for non-invasive surveillance methods to guide management and intervention. A multimodal imaging approach layers complementary insights from echocardiography, computed tomography (CT), magnetic resonance imaging (MRI), and other modalities into a clinician's view of patient physiology. Merely applying strategies from acquired adult cardiac disease would be inadequate and potentially misleading.

View Article and Find Full Text PDF

Challenges in clinical translation of cardiac magnetic resonance imaging radiomics in non-ischemic cardiomyopathy: a narrative review.

Cardiovasc Diagn Ther

December 2024

The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China.

Background And Objective: Radiomics is an emerging technology that facilitates the quantitative analysis of multi-modal cardiac magnetic resonance imaging (MRI). This study aims to introduce a standardized workflow for applying radiomics to non-ischemic cardiomyopathies, enabling clinicians to comprehensively understand and implement this technology in clinical practice.

Methods: A computerized literature search (up to August 1, 2024) was conducted using PubMed to identify relevant studies on the roles and workflows of radiomics in non-ischemic cardiomyopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!