The polewards range expansion of tropical herbivorous fish into temperate latitudes is leading to overgrazing of marine habitats and community phase shifts in some regions. Here, we test the potential effects of increased herbivory on the temperate habitat-forming seagrass . We used a series of simulated herbivory experiments to predict the potential impacts of climate-mediated increases in seagrass consumption along entire latitudinal range (~9° latitude) in eastern Australia (1700 km of coastline). We subjected treatment plots to two levels of simulated herbivory (10% or 80% of leaves clipped) and compared them to unclipped controls. We measured seagrass leaf growth rates and tissue chemical traits: carbohydrates in rhizomes, leaf phenolics, and nutrients (carbon, nitrogen, and C:N ratio) in leaves and rhizomes. At the warmest range-edge population, we also tested how responses to increased herbivory may vary between summer and winter, or with repeated clipping events. Clipped shoots maintained growth rates similar to unclipped controls despite losing up to 80% of leaf biomass. This was consistent along the full latitudinal range and after repeated simulated herbivory at the northernmost location. One-off clipping events impacted plant architecture, increasing the number of subdividing shoots. At the species range edge, leaves grew more in winter than in summer, and clipping tended to lower seagrass growth only in winter; however, higher levels of shoot subdivision were produced over summer than in winter. Plant chemical traits could not explain consistently the growth patterns observed despite some traits varying with latitude (e.g., leaf nitrogen content decreased with latitude and C:N ratio increased) and/or simulated herbivory. : growth is not affected by increases in simulated herbivory and may be relatively resilient to future increases in seagrass consumption, suggesting that this species could be a relative 'winner' under future climate change conditions that lead to enhanced herbivory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570194 | PMC |
http://dx.doi.org/10.1002/ece3.70561 | DOI Listing |
AbstractInducible defenses can affect the persistence, structure, and stability of consumer-resource systems. Theory shows that these effects depend on characteristics of the inducible defense, including timing, costs, efficacy, and sensitivity to consumer density. However, the expression and costs of inducible defenses often vary among life stages, which has not been captured in previous unstructured models.
View Article and Find Full Text PDFEcology
December 2024
Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway.
Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO fluxes in three tundra habitats varying in soil moisture and plant-community composition.
View Article and Find Full Text PDFEcology
November 2024
Odum School of Ecology, University of Georgia, Athens, Georgia, USA.
Plant Biol (Stuttg)
January 2025
Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
Most flowering plants are colour monomorphic, while within-population flower colour variation is rare. Multiple selection agents on flower colour, each favouring a different colour morph, may drive such uncommon polymorphisms. We tested the role of biotic antagonistic interactions in maintaining flower colour variation in Anemone coronaria (Ranunculaceae), in colour-polymorphic populations comprised of red, purple, and white flowers.
View Article and Find Full Text PDFEcol Evol
November 2024
Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!