Alginate hydrogels are frequently used in 3D bioprinting and tissue repair and regeneration. Establishing the structure-property-performance correlation of these materials would benefit significantly from high-resolution structural characterization in aqueous environments from the molecular level to continuum. This study overcomes technical challenges and enables high-resolution atomic force microscopy (AFM) imaging of hydrated alginate hydrogels in aqueous media. By combining a new sample preparation protocol with extremely gentle tapping mode AFM imaging, we characterized the morphology and regional mechanical properties of the hydrated alginate. Upon cross-linking, basic units of these hydrogel materials consist of egg-box dimers, which assemble into long fibrils. These fibrils congregate and pile up, forming a sponge-like structure, whose pore size and distribution depend on the cross-linking conditions. At the exterior, surface tension impacts the piling of fibrils, leading to stripe-like features. These structural features contribute to local, regional, and macroscopic mechanics. The outcome provides new insights into its structural characteristics from nanometers to tens of micrometers, i.e., at the dimensions pertaining to biomaterial and hydrogel-cell interactions. Collectively, the results advance our knowledge of the structure and mechanics from the nanometer to continuum, facilitating advanced applications in hydrogel biomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c03554 | DOI Listing |
Molecules
January 2025
Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, 48149 Münster, Germany.
Peptidoglycan is the basic structural polymer of the bacterial cell wall and maintains the shape and integrity of single cells. Despite years of research conducted on peptidoglycan's chemical composition, the microscopic elucidation of its nanoscopic architecture still needs to be addressed more thoroughly to advance knowledge on bacterial physiology. Apart from the model organism , ultrastructural imaging data on the murein architecture of Gram-negative bacteria is mostly missing today.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
We study the Raman signature of stripe domains in monolayer WMoS alloys, characterized using experimental techniques and density functional theory (DFT) calculations. These stripe domains were found in star-shaped monolayer WS exhibiting a high concentration of molybdenum (Mo) atoms in its central region, and unique Raman peaks that were not previously reported. We attribute these peaks to the splitting of the original doubly degenerate E modes, arising from the lower symmetry of the W-Mo stripe domains.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA.
We introduce a novel control mode for Scanning Tunneling Microscope (STM) that leverages di/dz feedback. By superimposing a high-frequency sinusoidal modulation on the control signal, we extract the amplitude of the resulting tunneling current to obtain a di/dz measurement as the tip is scanned over the surface. A feedback control loop is then closed to maintain a constant di/dz, enhancing the sensitivity of the tip to subtle surface variations throughout a scan.
View Article and Find Full Text PDFJ Membr Biol
January 2025
Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India.
Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Radiation Oncology, Inha University Hospital, Incheon, Republic of Korea.
Background: High-dose-rate (HDR) brachytherapy using Iridium-192 as a radiation source is widely employed in cancer treatment to deliver concentrated radiation doses while minimizing normal tissue exposure. In this treatment, the precision with which the sealed radioisotope source is delivered significantly impacts clinical outcomes.
Purpose: This study aims to evaluate the feasibility of a new four-dimensional (4D) in vivo source tracking and treatment verification system for HDR brachytherapy using a patient-specific approach.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!