Oxidized lipids arising from oxidative stress are associated with many serious health conditions, including cardiovascular diseases. For example, KDdiA-PC and KOdiA-PC are two oxidized phosphatidylcholines (oxPC) directly linked to atherosclerosis, which precipitate heart failure, stroke, aneurysms, and chronic kidney disease. These oxPCs are well-characterized in small particles such as low-density lipoprotein, but how their presence affects the biophysical properties of larger bilayer membranes is unclear. It is also unclear how membrane mediators, such as cholesterol, affect lipid bilayers containing these oxPCs. Here, we characterize supported lipid bilayers (SLBs) containing POPC, KDdiA-PC, or KOdiA-PC, and cholesterol. We used a quartz crystal microbalance with dissipation monitoring (QCM-D), fluorescence microscopy, and all-atom molecular dynamics (MD) to examine the formation process, biophysical properties, and specific lipid conformations in simulated bilayers. Experimentally, we show that liposomes containing either oxPC form SLBs by rupturing on contact with SiO substrates, which differs from the typical adsorption-rupture pathway observed with nonoxidized liposomes. We also show that increasing the oxPC concentration in SLBs results in thinner bilayers that contain defects. Simulations reveal that the oxidized -2 tails of KDdiA-PC and KOdiA-PC bend out of the hydrophobic membrane core into the hydrophilic headgroup region and beyond. The altered conformations of these oxPC, which are affected by cholesterol content and protonation state of the oxidized functional groups, contribute to trends of decreasing membrane thickness and increasing membrane area with increasing oxPC concentration. This combined approach provides a comprehensive view of the biophysical properties of membranes containing KDdiA-PC and KOdiA-PC at the molecular level, which is crucial to understanding the role of lipid oxidation in cardiovascular disease and related immune responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613439 | PMC |
http://dx.doi.org/10.1021/acs.jpcb.4c05451 | DOI Listing |
Food Chem
January 2025
Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China. Electronic address:
Multifunctional pH-responsive films were fabricated via layer-by-layer deposition of gelatin, chitosan, and carboxymethyl cellulose (CMC), incorporating selenium nanoparticles (SeNPs) and beetroot extract (BTE), to monitor and preserve beef freshness. SeNPs were synthesized and characterized via various techniques. BTE exhibited promising functional properties, and films demonstrated a significant color transition from red to yellow across pH 2-14.
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
Broad Institute of MIT & Harvard, Cambridge, MA. Electronic address:
Despite the widespread use of MS for hydrogen/deuterium exchange measurements, no systematic, large-scale study has been conducted to compare the observed exchange rates in protein-derived, unstructured peptides measured by MS to the predicted exchange rates calculated from NMR-derived values and how neighboring residues and post-translational modifications influence those exchange rates. In this study, we sought to test the accuracy of predicted values by performing hydrogen exchange measurements on whole cell digests to generate an unbiased dataset of 563 unique peptides derived from naturally-occurring protein sequences. A remarkable 97% of observed exchange rates of peptides are within two-fold of predicted values.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran. Electronic address:
Background: Carnosic acid (CA) has potential anti-cancer properties, but its effectiveness can be improved by combining it with Folic acid (FA). This research aimed to evaluate the impact of CA and CA-FA conjugate on breast cancer cell lines (MCF-7, MDA-MB-231, and MCA10).
Materials And Methods: The viability of the cell lines was measured using the MTT assay, and the IC₅₀ was determined to compare the cytotoxicity of CA and CA-FA.
Transl Vis Sci Technol
December 2024
Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
Purpose: To assess the safety of acoustic radiation force optical coherence elastography in the crystalline lens in situ.
Methods: Acoustic radiation force (ARF) produced by an immersion single-element ultrasound transducer (nominal frequency = 3.5 MHz) was characterized using a needle hydrophone and used for optical coherence elastography (OCE) of the crystalline lens.
FASEB J
January 2025
Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
Osteoarthritis (OA) is characterized by articular cartilage degeneration, leading to pain and loss of joint function. Recent studies have demonstrated that omega-3 (ω3) polyunsaturated fatty acid (PUFA) supplementation can decrease injury-induced OA progression in mice fed a high-fat diet. Furthermore, PUFAs have been shown to influence the mechanical properties of chondrocyte membranes, suggesting that alterations in mechanosensitive ion channel signaling could contribute to the mechanism by which ω3 PUFAs decreased OA pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!