Background: The rewiring of molecular interactions in various conditions leads to distinct phenotypic outcomes. Differential network analysis (DINA) is dedicated to exploring these rewirings within gene and protein networks. Leveraging statistical learning and graph theory, DINA algorithms scrutinize alterations in interaction patterns derived from experimental data.
Results: Introducing a novel approach to differential network analysis, we incorporate differential gene expression based on sex and gender attributes. We hypothesize that gene expression can be accurately represented through non-Gaussian processes. Our methodology involves quantifying changes in non-parametric correlations among gene pairs and expression levels of individual genes.
Conclusions: Applying our method to public expression datasets concerning diabetes mellitus and atherosclerosis in liver tissue, we identify gender-specific differential networks. Results underscore the biological relevance of our approach in uncovering meaningful molecular distinctions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575037 | PMC |
http://dx.doi.org/10.1186/s12859-024-05969-2 | DOI Listing |
Clin Oral Investig
January 2025
Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.
Objectives: We investigated the recently generated RNA-sequencing dataset of pulpitis to identify the potential pain-related lncRNAs for pulpitis prediction.
Materials And Methods: Differential analysis was performed on the gene expression profile between normal and pulpitis samples to obtain pulpitis-related genes. The co-expressed gene modules were identified by weighted gene coexpression network analysis (WGCNA).
Adv Healthc Mater
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China.
The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway.
View Article and Find Full Text PDFCureus
December 2024
Biomedical Sciences, University of Chicago, Chicago, USA.
Pediatric-type follicular lymphoma (PTFL) is an extremely rare B-cell lymphoma that primarily affects children and young adults, typically in individuals under 25 years old, with a median age of 15 years. Here, we report a rare case of PTFL in a 27-year-old adult male who presented with a slow-growing mass near his left ear. Initial CT scans of the neck revealed two oval-shaped, smooth, well-defined, homogeneously enhancing soft tissue density lesions in the superficial lobe of the left parotid gland.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Cell Biology Laboratory, Federal University of Alagoas, Maceió, Brazil.
The epithelial-mesenchymal transition (EMT) is a biological process in which epithelial cells change into mesenchymal cells with fibroblast-like characteristics. EMT plays a crucial role in the progression of fibrosis. Classical inducers associated with the maintenance of EMT, such as TGF-β1, have become targets of several anti-EMT therapeutic strategies.
View Article and Find Full Text PDFAm J Clin Exp Immunol
December 2024
Department of Internal Medicine, University of Michigan Ann Arbor, MI 48109, USA.
Since the COVID-19 pandemic, a significant number of pediatric leukemia patients have shown to have also contracted COVID-19 several weeks or months prior to the development of their cancer. Current research indicates the expression of MDA5, encoded by , is associated with increased immunity to COVID-19 in children. Children are also known to have a much lower risk of developing leukemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!