Nanopore approaches for single-molecule temporal omics: promises and challenges.

Nat Methods

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Published: November 2024

The great molecular heterogeneity within single cells demands omics analysis from a single-molecule perspective. Moreover, considering the perpetual metabolism and communication within cells, it is essential to determine the time-series changes of the molecular library, rather than obtaining data at only one time point. Thus, there is an urgent need to develop a single-molecule strategy for this omics analysis to elucidate the biosystem heterogeneity and temporal dynamics. In this Perspective, we explore the potential application of nanopores for single-molecule temporal omics to characterize individual molecules beyond mass, in both a single-molecule and high-throughput manner. Accordingly, recent advances in nanopores available for single-molecule temporal omics are reviewed from the view of single-molecule mass identification, revealing single-molecule heterogeneity and illustrating temporal evolution. Furthermore, we discuss the primary challenges associated with using nanopores for single-molecule temporal omics in complex biological samples, and present the potential strategies and notes to respond to these challenges.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41592-024-02492-3DOI Listing

Publication Analysis

Top Keywords

single-molecule temporal
16
temporal omics
16
nanopores single-molecule
12
single-molecule
9
omics analysis
8
temporal
6
omics
6
nanopore approaches
4
approaches single-molecule
4
omics promises
4

Similar Publications

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

Single-molecule imaging for investigating the transcriptional control.

Mol Cells

January 2025

Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul 02447, Korea. Electronic address:

Transcription is an essential biological process involving numerous factors, including transcription factors (TFs) which play a central role in this process by binding to their cognate DNA motifs. Although cells must tightly regulate the kinetics of factor association and dissociation during transcription, factor dynamics during transcription remain poorly characterized, primarily because of the reliance on ensemble experiments that average out molecular heterogeneity. Recent advances in single-molecule fluorescence imaging techniques have enabled the exploration of TF dynamics at unprecedented resolution.

View Article and Find Full Text PDF

The self-assembly of intrinsically disordered proteins (IDPs) into condensed phases and the formation of membrane-less organelles (MLOs) can be considered as the phenomenon of collective behavior. The conformational dynamics of IDPs are essential for their interactions and the formation of a condensed phase. From a physical perspective, collective behavior and the emergence of phase are associated with long-range correlations.

View Article and Find Full Text PDF

Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.

View Article and Find Full Text PDF

Single-molecule resolution of the conformation of polymers and dendrimers with solid-state nanopores.

Talanta

January 2025

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China. Electronic address:

Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!