A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PSO-NMPC control strategy based path tracking control of mining LHD (scraper). | LitMetric

The automation of underground articulated vehicles is a critical step in advancing digital and smart mining. Current nonlinear model predictive control (NMPC) controllers face challenges such as delays in turning on large curvature paths and correction lags during the control of underground the Load-Haul-Dump (LHD). To address these issues, this paper proposes a PSO-NMPC control strategy that integrates a particle swarm optimization algorithm (PSO) into the NMPC controller to enhance path tracking for LHDs. To verify the effectiveness of the proposed PSO-NMPC control strategy, the local path of the tunnels is selected as the simulation path, comparing it with the pure NMPC controller based on the path characteristics of the actual tunnel. The results demonstrate that the improved NMPC controller significantly enhances the trajectory tracking performance of the LHD, with maximum absolute lateral deviations for experimental paths 2, 3, and 5 improved by 89.7%, 72.2%, and 68.9%, respectively. Additionally, the improved NMPC controller exhibits superior performance in paths with large curvature compared to those with very small curvature and straight-line paths, effectively addressing the challenges of turn delay and backward lag in LHD operation, thus providing practical significance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574166PMC
http://dx.doi.org/10.1038/s41598-024-79248-8DOI Listing

Publication Analysis

Top Keywords

nmpc controller
16
pso-nmpc control
12
control strategy
12
based path
8
path tracking
8
large curvature
8
improved nmpc
8
path
5
control
5
nmpc
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!