A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Research on the rock cutting performance and feasibility verification of small-scale rotary cutting test for disc cutter. | LitMetric

Research on the rock cutting performance and feasibility verification of small-scale rotary cutting test for disc cutter.

Sci Rep

Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun, 130022, China.

Published: November 2024

Small-scale rock cutting tests serve as a simple approach to evaluate the performance of tunnel boring machines (TBMs), but the feasibility of this method requires further investigation. Herein, a small-scale rotary cutting machine is developed to conduct rock cutting tests, and the cutting performance is investigated. The results indicate that similar cutting performance can be achieved through both small-scale and full-scale tests. The critical penetration depth for effective rock cutting by the cutter is 0.5 mm, below which the cutter grinds against the rock. The optimal ratio of cutting spacing to penetration depth obtained in small-scale tests is 4.47. A result within the empirical range can be achieved by multiplying the optimal small-scale cutting parameters with the scale coefficient, demonstrating the feasibility of using small-scale tests to guide the design of cutter heads. Based on the test result, the scale prediction model is constructed to predict the full-scale cutting force. The predictive capability of the proposed model and CSM model is validated using 72 sets of full-scale test data involving the same types of rock, and the predictions of the proposed model are closer to the test data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573981PMC
http://dx.doi.org/10.1038/s41598-024-80059-0DOI Listing

Publication Analysis

Top Keywords

rock cutting
16
cutting performance
12
cutting
10
small-scale rotary
8
rotary cutting
8
cutting tests
8
penetration depth
8
small-scale tests
8
proposed model
8
test data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!