Background: The dibutyl phthalate (DBP) is a member of the phthalate family and is widely used as a plasticizer in daily life and production. However, the influence of DBP on the vascular developmental remains unclear.

Methods: In this study, we used zebrafish as a model organism to investigate the effects of DBP on vascular development in vivo. Death curves of zebrafish at different concentrations of DBP exposure and different times incubation were made firstly. Zebrafish embryos after fertilization for 5.5 h were exposed to different concentrations of DBP solution (0, 0.4, 0.8, 1.2 mg/L), the body length, yolk sac absorption area, mortality and heart rate of zebrafish were measured, and the number and area of sprouting of ventral vessels were quantified by transgenic fish system. Reactive oxygen species (ROS) in zebrafish embryos were observed by DCFH-DA staining. Super oxide dimutese (SOD) and catalase (CAT) were determined with ELISA kits.

Results: We found that DBP increased the oxidative stress level of zebrafish exposed to DBP, and the genes related to vascular development also increased. Meanwhile, the activities of SOD and CAT were greatly decreased after DBP exposure. In the rescue experiment, we found that the antioxidant astaxanthin and the small molecule VEGF inhibitor ZM-306,416 can reverse the vascular dysplasia caused by DBP.

Conclusions: DBP induced vascular developmental toxicity by enhancing oxidative stress levels, activating HIF pathway, and interfering with the expression of vascular development-related pathways in zebrafish, results in the abnormal development of the subintestinal vessels in zebrafish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574295PMC
http://dx.doi.org/10.1038/s41598-024-80088-9DOI Listing

Publication Analysis

Top Keywords

zebrafish
9
dbp
9
developmental toxicity
8
dibutyl phthalate
8
development subintestinal
8
subintestinal vessels
8
vessels zebrafish
8
dbp vascular
8
vascular developmental
8
vascular development
8

Similar Publications

Primordial germ cells (PGCs), the progenitors of gametes, are essential for teleost reproduction. While their formation is conserved across teleosts, the activation, migration routes, and localization periods vary among species. In this study, we developed a novel transgenic line, Tg(ddx4:TcCFP13-nanos3), based on the Nile tilapia genome, to label PGCs with clear fluorescent signals in the freshwater angelfish (Pterophyllum scalare).

View Article and Find Full Text PDF

Hygienic insecticides are applied directly to the living environment and are closely related to human life. Dimefluthrin (DIM) is one of the most widely used hygienic insecticides globally. However, with increasing mosquito resistance, both the concentration and duration of DIM usage have risen, prompting public concerns regarding its neurotoxic risks, especially for immunocompromised children.

View Article and Find Full Text PDF

Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock.

PLoS Genet

January 2025

School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China.

A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways.

View Article and Find Full Text PDF

The 18th International Zebrafish Conference (IZFC2024) took place from August 17 to 21, 2024, at Miyako Messe in Kyoto, Japan. This conference attracted 641 researchers from around the world along with 83 virtual participants, making it the largest gathering since the COVID-19 pandemic. The event featured two keynote lectures, three award lectures, 36 plenary talks, 90 oral presentations, and 374 poster presentations.

View Article and Find Full Text PDF

Trophic transfer of carbon-14 from algae to zebrafish leads to its blending in biomolecules and the dysregulation of metabolism via isotope effect.

Natl Sci Rev

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.

Carbon-14 (C-14) has been a major contributor to the human radioactive exposure dose, as it is released into the environment from the nuclear industry in larger quantities compared to other radionuclides. This most abundant nuclide enters the biosphere as organically bound C-14 (OBC-14), posing a potential threat to public health. Yet, it remains unknown how this relatively low radiotoxic nuclide induces health risks via chemical effects, such as isotope effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!