Microbial amylases should essentially remain active at higher temperatures, and in the alkaline pH and a range of surfactants to be suitable as detergent additives. In the present study, a thermophilic amylase producing bacterium, Bacillus licheniformis UDS-5 was isolated from Unai hot water spring in Gujarat, India. It was identified as a potent amylase producer during starch plate-based screening process. Therefore, the physicochemical parameters influencing amylase production were optimized using Plackett-Burman design and Central Composite Design. The amylase was purified through ammonium sulfate precipitation, size exclusion and ion exchange chromatography, achieving the purification fold and yield to be 9.2 and 40.6%, respectively. The enzyme displayed robust stability and activity across a wide range of temperatures and pHs, with an increased half-life and reduced deactivation rate constant. The amylase exhibited optimal catalysis at 70 °C and pH 8. The kinetic studies revealed Km and Vmax values of 0.58 mg/mL and 2528 μmol/mL/min, respectively. Besides, the purified amylase displayed stability in the presence of various metal ions, surfactants, and chelators suggesting its potential for industrial applications, particularly in the detergent industry. Moreover, detergent application studies demonstrated its efficacy in enhancing washing performance. A comparative profile on washing efficiency of the studied amylase and the commercial amylase with various detergents pointed towards its possible future use as a detergent additive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-024-04188-4 | DOI Listing |
Sci Rep
January 2025
Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
J Virol
December 2024
Agriculture College and Research Institute, Kudumiyanmalai, Pudukottai, Tamil Nadu, India.
Tomato is an important crop worldwide, but groundnut bud necrosis virus (GBNV) often hampers its growth. This study investigates the antiviral potential of bacterial endophytes, including CNEB54, CNEB4, CNEB26, and BAVE5 against GBNV, as well as their ability to enhance immunity and growth in tomato. All four bacterial isolates demonstrated a significant delay in GBNV symptom development 10 days post-inoculation, with disease incidence ranging from 18% to 36% compared to 84% in control.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China.
Ectoine is a high-value protective agent with extensive applications in the fields of fine chemicals and biopharmaceuticals, and it is naturally synthesized by Halomonas in extreme environment, however, the current production level cannot meet the growing market demand. In this study, we aimed to develop an efficient and environmentally friendly ectoine production process using Bacillus licheniformis as the host organism. Through introducing ectoine synthetase gene cluster ectABC from Halomonas elongate, as well as optimizing ectABC expression by promoter and 5'-UTR optimization, ectoine titer was increased to 0.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
December 2024
College of Food Science and Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou, 225127, Jiangsu, China.
Foodborne bacterial enteritis is a common clinical disease, and its incidence has risen globally. To screen for functional Bacillus strains with anti-inflammatory properties, tolerance to acid and bile salts, and antagonism against Salmonella, 22 strains of Bacillus were employed as candidate strains in this study. An inflammatory cell model was established using J774-Dual NF-κB/IRF reporter macrophages to identify anti-inflammatory Bacillus.
View Article and Find Full Text PDFIran J Microbiol
December 2024
Department of Biology, Faculty of Science, Farhangian University, Tehran, Iran.
Background And Objectives: The study focused on the amylase enzyme, widely used in the industrial starch liquefaction process. We looked into the best way to immobilize the native strain , which is the only alpha-amylase-producing bacterium, by trapping it in calcium alginate gel. This is a promising way to increase enzyme output.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!