Interaction between root exudates and PFOS mobility: Effects on rhizosphere microbial health in wetland ecosystems.

Environ Pollut

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.

Published: January 2025

Perfluorooctanesulfonate (PFOS), a persistent organic pollutant, poses significant ecological risks. This study investigates the effects of PFOS on rhizosphere microbial communities of two wetland plants, Lythrum salicaria (LS) and Phragmites communis (PC). We conducted microcosm experiments to analyze the physiological status of soil microbes under varying PFOS concentrations and examined the role of root exudates in modulating PFOS mobility. Flow cytometry and soil respiration measurements revealed that PFOS exposure increased microbial mortality, with differential impacts observed between LS and PC rhizospheres. LS root exudates intensified microbial stress, whereas PC exudates mitigated PFOS toxicity. Thin-layer chromatography indicated that LS exudates decreased PFOS mobility, leading to higher local concentrations and increased microbial toxicity, while PC exudates enhanced PFOS mobility, reducing its local impact. Fourier-transform infrared spectroscopy and excitation-emission matrix fluorescence spectroscopy of root exudates identified compositional shifts under PFOS stress, highlighting distinct defense strategies in LS and PC. These findings underscore the importance of plant-microbe interactions and root exudate composition in determining microbial resilience to PFOS contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.125324DOI Listing

Publication Analysis

Top Keywords

root exudates
16
pfos mobility
16
pfos
11
rhizosphere microbial
8
increased microbial
8
exudates
7
microbial
6
interaction root
4
exudates pfos
4
mobility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!