The processing of kinematic information embedded in observed actions is an essential ability for understanding others' behavior. Previous research showed that the action observation network (AON) may encode some action kinematic features. However, our understanding of how direction and velocity are encoded within the AON is still limited. In this study, we employed event-related fMRI to investigate the neural substrates specifically activated during observation of hand grasping actions presented as point-light displays, performed with different directions (right, left) and velocities (fast, slow). Twenty-three healthy adult participants took part in the study. To identify brain regions differentially recruited by grasping direction and velocity, univariate and multivariate pattern analysis (MVPA) were performed. The results of univariate analysis demonstrate that direction is encoded in occipito-temporal and posterior visual areas, while velocity recruits lateral occipito-temporal, superior parietal and intraparietal areas. Results of MVPA further show: a) a significant decoding accuracy of both velocity and direction at the network level; b) the possibility to decode within lateral occipito-temporal and parietal areas both direction and velocity; c) a contribution of bilateral premotor areas to velocity decoding models. These results indicate that posterior parietal nodes of the AON are mainly involved in coding grasping direction and that premotor regions are crucial for coding grasping velocity, while lateral occipito-temporal cortices play a key role in encoding both parameters. The current findings could have implications for observational-based rehabilitation treatments of patients with motor disorders and artificial intelligence-based hand action recognition models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2024.120939 | DOI Listing |
Sci Rep
December 2024
Department of Physics, IIT(BHU), Varanasi, 221005, U.P., India.
The collection of active agents often exhibits intriguing statistical and dynamical properties, particularly when considering human crowds. In this study, we have developed a computational model to simulate the recent experiment on real marathon races by Bain et al. (Science 363:46-49, 2019).
View Article and Find Full Text PDFSports (Basel)
November 2024
International College of Football, Tongji University, No.1239, Siping Road, Yangpu, Shanghai 200092, China.
Heading is a key skill in soccer, and it is few investigated in females. Research on heading focused mostly on males and on young players. Data on females' soccer players are sparse and it is difficult to draw firm conclusions.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Department of Physics, Faculty of Science, Ibn Tofail University, Kenitra 14000, Morocco.
The Silway River has historically failed to meet safe fecal coliform levels due to improper waste disposal. The river mouth is located in General Santos City, the tuna capital of the Philippines and a leading producer of hogs, cattle, and poultry. The buildup of contaminants due to direct discharge of waste from chicken farms and existing water quality conditions has led to higher fecal matter in the Silway River.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
December 2024
Institut Supérieur de Sport et de l'Éducation Physique du Kef, Université de Jendouba, Le Kef 7100, Tunisia.
In karate, the ability to execute high-velocity movements, particularly kicks and punches, is heavily dependent on the strength and power of the lower limb muscles, especially the knee extensors. As such, this study aimed to evaluate the effects of an 8-week eccentric training program utilizing the reverse Nordic exercise (RNE) integrated into karate training compared with regular karate training only on measures of physical fitness in youth karate athletes. Twenty-seven youth karatekas were recruited and allocated to either RNE group (n = 13; age = 15.
View Article and Find Full Text PDFLangmuir
December 2024
School of Computer and Artifitial Intelligence, Beijing Technology and Business University, Beijing 100048, China.
Inspired by the ultrafast directional water transport structure of Sarracenia trichomes, hierarchical textured surfaces with specific microgrooves were prepared based on laser processing combined with dip modification, in response to the growing problem of freshwater scarcity. The prepared surfaces were tested for droplet transport behavior to investigate the relationship between the surface structure and the driving force of directional water transport and their effects on the water transport distance and water transport velocity. The results showed that surfaces with a superhydrophobic background associated channels of multirib structures, and a dual-gradient surface of gradient hydrophobic background associated channels with gradient structure performed the best in terms of water transport efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!