A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stability of sputtered iridium oxide neural microelectrodes under kilohertz frequency pulsed stimulation. | LitMetric

Stability of sputtered iridium oxide neural microelectrodes under kilohertz frequency pulsed stimulation.

J Neural Eng

Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America.

Published: November 2024

AI Article Synopsis

  • Kilohertz (kHz) frequency stimulation is being explored as a neuromodulation therapy for chronic pain, focusing on its effects on microelectrode materials.
  • The study evaluated sputtered iridium oxide film (SIROF) microelectrodes' electrochemical stability under pulsed electrical stimulation between 1.5-10 kHz and different charge densities.
  • Results indicated that higher frequencies increased electrode polarization, with bipolar configurations showing greater polarization than monopolar ones, while the microelectrodes maintained stable performance without major changes in electrochemical behavior even after multiple pulses.

Article Abstract

. Kilohertz (kHz) frequency stimulation has gained attention as a neuromodulation therapy in spinal cord and in peripheral nerve block applications, mainly for treating chronic pain. Yet, few studies have investigated the effects of high-frequency stimulation on the performance of the electrode materials. In this work, we assess the electrochemical characteristics and stability of sputtered iridium oxide film (SIROF) microelectrodes under kHz frequency pulsed electrical stimulation.. SIROF microelectrodes were subjected to 1.5-10 kHz pulsing at charge densities of 250-1000C cm(25-100 nC phase), under monopolar and bipolar configurations, in buffered saline solution. The electrochemical behavior as well as the long-term stability of the pulsed electrodes was evaluated by voltage transient, cyclic voltammetry, and electrochemical impedance spectroscopy measurements.. Electrode polarization was more pronounced at higher stimulation frequencies in both monopolar and bipolar configurations. Bipolar stimulation resulted in an overall higher level of polarization than monopolar stimulation with the same parameters. In all tested pulsing conditions, except one, the maximum cathodal and anodal potential excursions stayed within the water window of iridium oxide (-0.6-0.8 V vs Ag|AgCl). Additionally, these SIROF microelectrodes showed little or no changes in the electrochemical performance under continuous current pulsing at frequencies up to 10 kHz for more than 10pulses.e. Our results suggest that 10 000mSIROF microelectrodes can deliver high-frequency neural stimulation up to 10 kHz in buffered saline at charge densities between 250 and 1000C cm(25-100 nC phase).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700383PMC
http://dx.doi.org/10.1088/1741-2552/ad9404DOI Listing

Publication Analysis

Top Keywords

iridium oxide
12
sirof microelectrodes
12
stability sputtered
8
sputtered iridium
8
frequency pulsed
8
stimulation
8
khz frequency
8
charge densities
8
cm25-100 phase
8
monopolar bipolar
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!