Narrative review of proximal tubular epithelial cellco-culture models.

Biofabrication

Department of Nephrology, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia.

Published: November 2024

Kidney diseases are among the leading causes of death globally. With the increasing rates of acute kidney injury (AKI) requiring hospitalisation, a better understanding of pathophysiological mechanisms is needed to treat the patients more efficiently. Nephrotoxicity is one of the most common causes of AKI, mainly due to the high availability of over-the-counter drugs and natural supplements, which may interact with prescribed drugs at the level of pharmacokinetics, among other factors. The latter can lead to clinically relevant complications (including AKI), which is even more pronounced given the increasingly ageing population in the Western world and the associated increase in polypharmacy. Drug testing starts at the preclinical level, where a reliable model is needed to predict human response to a tested drug with sufficient accuracy. Recently,kidney models of different complexities have been created to study various aspects of kidney diseases. Because the proximal tubule plays a vital role in several mechanisms, many models include proximal tubular epithelial cells (PTECs). Monocultures of PTECs do not representtissue accurately enough. Therefore, more complex models with more cell types are being built. To our knowledge, this is the first review focusing on co-culture models and cell types used alongside PTECs for studying the nephrotoxicity of drugs and other mechanisms of AKI and chronic kidney disease.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1758-5090/ad9407DOI Listing

Publication Analysis

Top Keywords

proximal tubular
8
tubular epithelial
8
kidney diseases
8
models cell
8
cell types
8
models
5
narrative review
4
review proximal
4
epithelial cellco-culture
4
cellco-culture models
4

Similar Publications

Aim/introduction: Senescence is a key driver of age-related kidney dysfunction, including diabetic kidney disease. Oxidative stress activates cellular senescence, induces abnormal glycolysis, and is associated with pyruvate kinase muscle isoform 2 (PKM2) dysfunction; however, the mechanisms linking PK activation to cellular senescence have not been elucidated. We hypothesized that PKM2 activation by TEPP-46 could suppress oxidative stress-induced renal tubular cell injury and cellular senescence.

View Article and Find Full Text PDF

While changes in glomerular function and structure may herald diabetic kidney disease (DKD), many studies have underscored the significance of tubule-interstitial changes in the progression of DKD. Indeed, tubule-interstitial fibrosis may be the most important determinant of progression of DKD as in many forms of chronic glomerulopathies. The mechanisms underlying the effects of tubular changes on glomerular function in DKD have intrigued many investigators, and therefore, the signaling mechanisms underlying the cross-talk between tubular cells and glomerular cells have been the focus of investigation in many recent studies.

View Article and Find Full Text PDF

Introduction: Diabetic nephropathy (DN) is a common diabetes-related complication with unclear underlying pathological mechanisms. Although recent studies have linked glycolysis to various pathological states, its role in DN remains largely underexplored.

Methods: In this study, the expression patterns of glycolysis-related genes (GRGs) were first analyzed using the GSE30122, GSE30528, and GSE96804  datasets, followed by an evaluation of the immune landscape in DN.

View Article and Find Full Text PDF

Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.

View Article and Find Full Text PDF

Renal fibrosis is a common pathway involved in the progression of various chronic kidney diseases to end-stage renal disease. Recent studies show that mitochondrial injury of renal tubular epithelial cells (RTECs) is a crucial pathological foundation for renal fibrosis. However, the underlying regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!