Tire and road wear particles are a major source of microplastics to urban stormwater. They are composed of hetero-aggregates of abraded tire and pavement particles that are difficult to distinguish. While tire wear is a known source of microplastics, little is known on the contribution of pavement wear. This two-year field study with complementary lab testing evaluates the effects of pavement degradation on microplastic generation in stormwater from different pavement types: asphalt, concrete, and recycled rubber pavers. Pavement specimens from each site were collected and underwent degradation testing. We directly demonstrated that pavement wear is a source of microplastics in stormwater separate from tire wear. We showed that the rubber pavement released the most microplastics in lab testing, suggesting that the formulation of such novel recycled-tire pavers must undergo thorough testing before wide application. The asphalt pavement was the most susceptible to rutting and released the most microplastics in the field, including a large proportion of tire wear particles. Both land-use and pavement surface characteristics influenced microplastic generation. These results demonstrate the need to consider microplastic generation during pavement material selection and mitigate the spread of microplastics from pavement wear to nearby environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136495 | DOI Listing |
Mar Pollut Bull
December 2024
Stantec, Pittsburgh, PA, United States.
Tire and road wear particles (TRWP) are generated at the frictional interface between tires and the road surface. This mixture of tire tread and road pavement materials can migrate from roads into nearby water bodies during precipitation events. The absence of mass-based measurements in marine environments introduces uncertainty in environmental risk assessments and fate and transport models.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada; Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada. Electronic address:
Tire and road wear particles are a major source of microplastics to urban stormwater. They are composed of hetero-aggregates of abraded tire and pavement particles that are difficult to distinguish. While tire wear is a known source of microplastics, little is known on the contribution of pavement wear.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
Wear microparticles are produced on roads by traffic, and they can be transferred to rivers and seas settling as sediments. The sedimentation rate increases with increasing particle density and size. In this study, the types and amounts of high-density wear microparticles (HDWPs, >1.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
In this study, a wear-resistant ultra-thin wear layer was fabricated with polyurethane as an adhesive to investigate its durability for pavement applications. Its road performance was investigated based on indoor tests. First, the abrasion test was performed using a tire-pavement dynamic friction analyzer (TDFA), and the surface elevation information of the wear layer was obtained by laser profile scanning.
View Article and Find Full Text PDFMaterials (Basel)
September 2024
School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430074, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!