Raman spectroscopy is a powerful analytical method, but when the composition of the test sample is intricate, the original spectral data may contain noise and fluorescence background interference, making it more difficult to extract Raman spectral information from the original spectra. Especially the fluorescence background signal, which is typically several orders of magnitude stronger than the Raman signal, can even overwhelm or obscure the Raman signals, thereby impeding the qualitative or quantitative analysis of the Raman spectra. One effective method for removing the fluorescence background is shift excitation Raman differential spectroscopy (SERDS), which typically involves measuring two raw Raman spectra using slightly different excitation wavelengths, combined with reconstruction algorithms, to obtain Raman spectra free from fluorescence interference. For this purpose, a reconstruction method based on Tikhonov regularized least squares (TRLS) was developed in this study, which mitigated the oscillations caused by the direct unconstrained least squares (DULS) reconstruction method. The method was verified and optimized using four groups of artificial datasets with different characteristics. By selecting an appropriate value for parameter α, the relative standard deviation (RSD) of the reconstructed datasets was lower than that of the artificial datasets in most cases. Additionally, we evaluated the performance of the TRLS reconstruction algorithm based on a quantitative model of real Raman spectral datasets, assessing the algorithm's performance from three perspectives: the root mean square error (RMSE), the correlation coefficient (R), and the ratio of prediction to deviation (RPD). The quantitative results indicate that using the TRLS method for reconstruction enhances both prediction accuracy and practicality. In summary, findings from both simulated data and actual experiments demonstrate that the TRLS-based reconstruction method substantially improves the stability and reliability of differential Raman spectra reconstruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.125397 | DOI Listing |
Eur Arch Otorhinolaryngol
January 2025
Department of Otolaryngology, Robert Debre Hospital, Assistance Publique Hôpitaux de Paris (APHP) and Paris University, 48, Boulevard Sérurier, 75019, Paris, France.
Objectives: This study aimed to identify factors predicting postoperative ICU admission, the need for orotracheal intubation (OTI), and the occurrence of supraglottic stenosis in children undergoing supraglottoplasty for laryngomalacia.
Methods: A retrospective analysis was conducted on 31 children (Dear Reviewer, we would have greatly preferred to include a larger sample size. However, as you know, this type of management is rare, and we deliberately selected a 7-year period to ensure a minimum of 30 children while avoiding significant differences in management guidelines over time.
Cranioplasty is an operation that aims to repair a defect in the skull. Indications commonly include Traumatic Brain Injury (TBI), tumours, and infections. It carries a high rate of postoperative morbidity.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, USA.
Background: The placement of breast implants in a prepectoral plane has become increasingly popular in breast reconstruction, although data on how this affects radiation delivery in women with breast cancer are limited. This study aimed to assess the dosimetric differences in radiation plans for immediate breast reconstruction between prepectoral and subpectoral implants.
Methods: In this study, a retrospective review and dosimetric analysis of patients with breast cancer who underwent immediate implant-based reconstruction and postmastectomy radiation therapy (PMRT) were performed.
Nano Lett
January 2025
Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
The development of accurate methods for determining how alloy surfaces spontaneously restructure under reactive and corrosive environments is a key, long-standing, grand challenge in materials science. Using machine learning-accelerated density functional theory and rare-event methods, in conjunction with environmental transmission electron microscopy (ETEM), we examine the interplay between surface reconstructions and preferential segregation tendencies of CuNi(100) surfaces under oxidation conditions. Our modeling approach predicts that oxygen-induced Ni segregation in CuNi alloys favors Cu(100)-O c(2 × 2) reconstruction and destabilizes the Cu(100)-O (2√2 × √2)45° missing row reconstruction (MRR).
View Article and Find Full Text PDFPlast Reconstr Surg
January 2025
Monmouth Plastic Surgery, P.C.
Introduction: Laser resurfacing provides a minimally invasive method for addressing facial/neck skin rejuvenation neglected by modern surgical approaches. Despite its popularity, there is a paucity of outcome data. Herein, we present patient reported outcomes (PROs) to assess the effectiveness of a single surgeon's approach to skin rejuvenation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!