Traumatic brain injuries (TBIs) cause multifaceted disruption in the neural network, initiate huge inflammation processes, and form glial scars that result in severe damage to the brain. Thus, the treatment of TBI is a challenging task. To address this challenge, a newer and innovative approach is extremely important to develop a successful therapeutic strategy. Toward this aim, we hereby report an extremely effective therapeutic strategy. This interesting approach showcased the development and validation of a combination therapy comprising a neuro-regenerative protective peptide hydrogel (SLNAP) and a potent neuro-regenerative chemical modulator (NCM). It is noteworthy to mention that this hydrogel formulation has injectable nature, which allows it to be applied at focal injury site of brain. Remarkably, our results reveal excellent transdifferentiation of human umbilical cord-derived mesenchymal stem cells (hMSCs) into functional neuron upon treatment with this combination therapeutic formulation. The functionality of regenerated neurons was thoroughly checked through observation of active signals generated from those neurons in electrophysiology recording using patch clamp. Further, we also observed that this strategy not only successfully converts hMSCs into neuron but also spontaneously formed neural stem cells (NSCs) like neurosphere. This work also showcased that this multidomain self-assembling peptide hydrogel emerges as an attractive soft-biomaterial due to its capability of slow and sustained release of the drug at the injury site upon topical application. This resulted in significant regeneration of functional neuron at the injury site. Fascinatingly, we found that this combination therapeutic strategy is highly effective in brain injury model establishing that this could be a potential and highly effective therapeutic strategy for TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c12554 | DOI Listing |
Biomed Pharmacother
December 2024
College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA. Electronic address:
Osteoporosis, a condition marked by the loss of bone density and mass, affects individuals of all ages. However, it becomes more prevalent and severe with aging, increasing the risk of fractures and other health complications. Recent research has highlighted a link between osteoporosis and periodontitis, a chronic gum disease, as both conditions involve excessive bone loss that can lead to significant oral health problems if untreated.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States.
The development of photoswitches that absorb low energy light is of notable interest due to the growing demand for smart materials and therapeutics necessitating benign stimuli. Donor-acceptor Stenhouse adducts (DASAs) are molecular photoswitches that respond to light in the visible to near-infrared spectrum. As a result of their modular assembly, DASAs can be modified at the donor, acceptor, triene, and backbone heteroatom molecular compartments for the tuning of optical and photoswitching properties.
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Medicine, Department of Medical Biochemistry and Molecular Biology, Fayoum University, Fayoum, Egypt.
Background: The SARS-CoV-2 virus's frequent mutations have made disease control with vaccines and antiviral drugs difficult; as a result, there is a need for more effective coronavirus drugs. Therefore, detecting the expression of various diagnostic biomarkers, including ncRNA in SARS-CoV2, implies new therapeutic strategies for the disease.
Aim: Our study aimed to measure NEAT-1, miR-374b-5p, and IL6 in the serum of COVID-19 patients, demonstrating the correlation between target genes to explore the possible relationship between them.
PLoS One
December 2024
Servier, Research & Development, Gif-sur-Yvette, France.
Improving the selectivity and effectiveness of drugs represents a crucial issue for future therapeutic developments in immuno-oncology. Traditional bulk transcriptomics faces limitations in this context for the early phase of target discovery as resulting gene expression levels represent the average measure from multiple cell populations. Alternatively, single cell RNA sequencing can dive into unique cell populations transcriptome, facilitating the identification of specific targets.
View Article and Find Full Text PDFMol Pharm
December 2024
Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!