A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bridging theory and data: A computational workflow for cultural evolution. | LitMetric

Bridging theory and data: A computational workflow for cultural evolution.

Proc Natl Acad Sci U S A

Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.

Published: November 2024

Cultural evolution applies evolutionary concepts and tools to explain the change of culture over time. Despite advances in both theoretical and empirical methods, the connections between cultural evolutionary theory and evidence are often vague, limiting progress. Theoretical models influence empirical research but rarely guide data collection and analysis in logical and transparent ways. Theoretical models themselves are often too abstract to apply to specific empirical contexts and guide statistical inference. To help bridge this gap, we outline a quality-assurance computational workflow that starts from generative models of empirical phenomena and logically connects statistical estimates to both theory and real-world explanatory goals. We emphasize and demonstrate validation of the workflow using synthetic data. Using the interplay between conformity, migration, and cultural diversity as a case study, we present coded and repeatable examples of directed acyclic graphs, tailored agent-based simulations, a probabilistic transmission model for longitudinal data, and an approximate Bayesian computation model for cross-sectional data. We discuss the assumptions, opportunities, and pitfalls of different approaches to generative modeling and show how each can be used to improve data analysis depending on the structure of available data and the depth of theoretical understanding. Throughout, we highlight the significance of ethnography and of collecting basic cultural and demographic information about study populations and call for more emphasis on logical and theory-driven workflows as part of science reform.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621747PMC
http://dx.doi.org/10.1073/pnas.2322887121DOI Listing

Publication Analysis

Top Keywords

computational workflow
8
cultural evolution
8
theoretical models
8
data
7
cultural
5
bridging theory
4
theory data
4
data computational
4
workflow cultural
4
evolution cultural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!