Spherical supramolecular dendrimers including helical, self-organize soft Frank-Kasper, other cubic such as body-centered cubic, and quasicrystal periodic and quasiperiodic arrays. When any of these periodic or quasiperiodic arrays forms immediately above a columnar phase, a supramolecular orientational memory effect was found to discriminate between mechanisms of self-organization of supramolecular spheres and generate unprecedented periodic arrays of helical columns which cannot be constructed by any other methodology. Here, we demonstrate that unwinding spherical helices, via their precursor nonhelical columns, increases the entropy and stability of their periodic and quasiperiodic spherical arrays and places the Frank-Kasper and other cubic phases immediately above the columnar phase. This process is not available in biology where spherical viruses self-organize body-centered cubic lattices. However, this concept reengineers, on increasing temperature, the originally expected position of the periodic and quasiperiodic array versus that of the columnar lattice. This process facilitates discrimination between different self-organization mechanisms of supramolecular spheres and also mediates the emergence of unprecedentedly complex and technologically important periodic arrays of nonhelical columns.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c13688DOI Listing

Publication Analysis

Top Keywords

periodic quasiperiodic
16
periodic arrays
12
unwinding spherical
8
spherical helices
8
increases entropy
8
entropy stability
8
discrimination self-organization
8
self-organization mechanisms
8
frank-kasper cubic
8
body-centered cubic
8

Similar Publications

This work presents a unique and straightforward method to synthesise hafnium oxide (HfO) and hafnium carbide (HfC) nanoparticles (NPs) and to fabricate hafnium nanostructures (NSs) on a Hf surface. Ultrafast picosecond laser ablation of the Hf metal target was performed in three different liquid media, namely, deionised water (DW), toluene, and anisole, to fabricate HfO and HfC NPs along with Hf NSs. Spherical HfO NPs and nanofibres were formed when Hf was ablated in DW.

View Article and Find Full Text PDF

We study dynamical localization in an ultracold atom confined in an optical lattice that is simultaneously shaken by two competing pulsatile modulations with different amplitudes, periods, and waveforms. The effects of finite-width time pulses, modulation waveforms, and commensurable and incommensurable driving periods are investigated. We describe a particularly complex scenario and conclude that dynamical localization can survive, or even increase, when a periodic modulation is replaced by a quasiperiodic one of equal amplitude.

View Article and Find Full Text PDF

Mathematically inspired structure design in nanoscale thermal transport.

Nanoscale

December 2024

Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.

Mathematically inspired structure design has emerged as a powerful approach for tailoring material properties, especially in nanoscale thermal transport, with promising applications both within this field and beyond. By employing mathematical principles, based on number theory, such as periodicity and quasi-periodic organizations, researchers have developed advanced structures with unique thermal behaviours. Although periodic phononic crystals have been extensively explored, various structural design methods based on alternative mathematical sequences have gained attention in recent years.

View Article and Find Full Text PDF

This study investigates how laser-induced surface modifications influence key properties such as wear resistance, hardness, and friction in dry and lubricated conditions. The research applies nanosecond pulsed laser treatment to create random, quasi-random, quasi-periodic, and periodic surface structures on the steel surface, aiming to enhance the wear resistance and reduce the coefficient of friction (COF). The frictional performance between the carbon steel ball and the texturized surface was evaluated, including an analysis of the initial friction phase contact (single, double, and multi-contact), with the surface topography assessed before and after wear.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the formation of intricate patterns, or "metamorphic tongues," in a system made up of a rotor and a Duffing oscillator, highlighting their unusual quasiperiodic and chaotic behaviors.
  • Researchers use Lyapunov exponents to map out self-similar islands of stability and chaos in the system's two-dimensional parameter space.
  • Notably, quasiperiodic shrimp-shaped domains exhibit features akin to periodic systems, including complicated behaviors like torus-doubling and torus-tripling.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!