The mutation-selection mechanism of Darwinian evolution gives rise not only to adaptation to environmental conditions but also to the enhancement of robustness against mutations. When two or more phenotypes have the same fitness value, the robustness distribution for different phenotypes can vary. Thus, we expect that some phenotypes are favored in evolution and that some are hardly selected because of a selection bias for mutational robustness. In this study, we investigated this selection bias for phenotypes in a model of gene regulatory networks (GRNs) using numerical simulations. The model had one input gene accepting a signal from the outside and one output gene producing a target protein, and the fitness was high if the output for the full signal was much higher than that for no signal. The model exhibited three types of responses to changes in the input signal: monostable, toggle switch, and one-way switch. We regarded these three response types as three distinguishable phenotypes. We constructed a randomly generated set of GRNs using the multicanonical Monte Carlo method originally developed in statistical physics and compared it to the outcomes of evolutionary simulations. One-way switches were strongly suppressed during evolution because of their lack of mutational robustness. By examining one-way switch GRNs in detail, we found that mutationally robust GRNs obtained by evolutionary simulations and non-robust GRNs obtained by McMC have different network structures. While robust GRNs have a common core motif, non-robust GRNs lack this motif. The bistability of non-robust GRNs is considered to be realized cooperatively by many genes, and these cooperative genotypes have been suppressed by evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573163 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311058 | PLOS |
Mol Clin Oncol
February 2025
Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.
Disulfidptosis, which was recently identified, has shown promise as a potential cancer treatment. Nonetheless, the precise role of long non-coding RNAs (lncRNAs) in this phenomenon is currently unclear. To elucidate their significance in bladder cancer (BLCA), a signature of disulfidptosis-related lncRNAs (DRlncRNAs) was developed and their potential prognostic significance was explored.
View Article and Find Full Text PDFEur J Neurol
January 2025
Neuromuscular Unit, Neurology Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
Background: Charcot-Marie-Tooth (CMT) disease is the most common inherited neuropathy. In this study, we aimed to analyze the genetic spectrum and describe phenotypic features in a large cohort from Türkiye.
Methods: Demographic and clinical findings were recorded.
Egypt Heart J
January 2025
Department of Physiology, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria.
Background: Hypertrophic cardiomyopathy (HCM) is a frequently encountered cardiac condition worldwide, often inherited, and characterized by intricate phenotypic and genetic manifestations. The natural progression of HCM is diverse, largely due to mutations in the contractile and relaxation proteins of the heart. These mutations disrupt the normal structure and functioning of the heart muscle, particularly affecting genes that encode proteins involved in the contraction and relaxation of cardiac muscle.
View Article and Find Full Text PDFCell Regen
January 2025
Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
Astroglia are integral to brain development and the emergence of neurodevelopmental disorders. However, studying the pathophysiology of human astroglia using brain organoid models has been hindered by inefficient astrogliogenesis. In this study, we introduce a robust method for generating astroglia-enriched organoids through BMP4 treatment during the neural differentiation phase of organoid development.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Xi'an AMS Center, State Key Laboratory of Loess Science, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China.
There has been a sharp rise in the extent and scale of human activities since the mid-20th century, termed the "Great Acceleration", and nuclear activities are one of the defining technological processes for this period. Pu released by atmospheric nuclear weapons tests provides an ideal chronostratigraphic marker for labeling this change due to its global fallout feature, temporal mutation, and long half-lives. However, the accumulation dynamics of plutonium from atmospheric deposition to preservation in the sediment is still controversial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!