A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermally Stable Capacitive Energy-Density and Colossal Electrocaloric and Pyroelectric Effects of Sm-Doped Pb(MgNb)O-PbTiO Thin Films. | LitMetric

Sm-doped Pb(MgNb)O-PbTiO (Sm-PMN-PT) bulk materials have revealed outstanding ferroelectric and piezoelectric properties due to enhanced local structural heterogeneity. In this study, we further explore the potential of Sm-PMN-PT by fabricating epitaxial thin films by pulsed laser deposition, revealing that Sm doping significantly improves the capacitive energy-storage, piezoelectric, electrocaloric, and pyroelectric properties of PMN-PT thin films. These Sm-PMN-PT thin films exhibit fatigue-free performance up to 10 charge-discharge cycles and maintain thermal stability across a wide temperature range from -40 to 200 °C. Notably, the films demonstrate a colossal electrocaloric effect with a temperature change of 59.4 K and a remarkable pyroelectric energy density reaching 40 J cm. By using scanning transmission electron microscopy and phase-field modeling, we revealed that these exceptional properties arise from the increased local structural heterogeneity and strong local electric fields along spontaneous polarization directions, facilitating the nucleation of polymorphic nanodomains characterized by a slush-like polar structure. These findings highlight the enormous potential of Sm-PMN-PT films in capacitive energy storage and solid-state electrothermal energy interconversion. Furthermore, this approach holds broad potential for other relaxor ferroelectrics by enabling the manipulation of nanodomain structures, paving the way for developing robust multifunctional materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613449PMC
http://dx.doi.org/10.1021/jacs.4c11555DOI Listing

Publication Analysis

Top Keywords

thin films
16
colossal electrocaloric
8
electrocaloric pyroelectric
8
sm-doped pbmgnbo-pbtio
8
local structural
8
structural heterogeneity
8
potential sm-pmn-pt
8
films
6
thermally stable
4
stable capacitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!