Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sm-doped Pb(MgNb)O-PbTiO (Sm-PMN-PT) bulk materials have revealed outstanding ferroelectric and piezoelectric properties due to enhanced local structural heterogeneity. In this study, we further explore the potential of Sm-PMN-PT by fabricating epitaxial thin films by pulsed laser deposition, revealing that Sm doping significantly improves the capacitive energy-storage, piezoelectric, electrocaloric, and pyroelectric properties of PMN-PT thin films. These Sm-PMN-PT thin films exhibit fatigue-free performance up to 10 charge-discharge cycles and maintain thermal stability across a wide temperature range from -40 to 200 °C. Notably, the films demonstrate a colossal electrocaloric effect with a temperature change of 59.4 K and a remarkable pyroelectric energy density reaching 40 J cm. By using scanning transmission electron microscopy and phase-field modeling, we revealed that these exceptional properties arise from the increased local structural heterogeneity and strong local electric fields along spontaneous polarization directions, facilitating the nucleation of polymorphic nanodomains characterized by a slush-like polar structure. These findings highlight the enormous potential of Sm-PMN-PT films in capacitive energy storage and solid-state electrothermal energy interconversion. Furthermore, this approach holds broad potential for other relaxor ferroelectrics by enabling the manipulation of nanodomain structures, paving the way for developing robust multifunctional materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613449 | PMC |
http://dx.doi.org/10.1021/jacs.4c11555 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!