A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Macromolecular crowding and bicarbonate enhance the hydrogen peroxide-induced inactivation of glyceraldehyde-3-phosphate dehydrogenase. | LitMetric

The active site Cys residue in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is sensitive to oxidation by hydrogen peroxide (H2O2), with this resulting in enzyme inactivation. This re-routes the carbon flux from glycolysis to the pentose phosphate pathway favoring the formation of NADPH and synthetic intermediates required for antioxidant defense and repair systems. Consequently, GAPDH inactivation serves as a redox switch for metabolic adaptation under conditions of oxidative stress. However, there is a major knowledge gap as to how GAPDH is efficiently oxidized and inactivated, when the increase in intracellular H2O2 is modest, and there is a high concentration of alternative (non-signaling) thiols and efficient peroxide removing systems. We have therefore explored whether GAPDH inactivation is enhanced by two factors of in vivo relevance: macromolecular crowding, an inherent property of biological environments, and the presence of bicarbonate, an abundant biological buffer. Bicarbonate is already known to modulate H2O2 metabolism via formation of peroxymonocarbonate. GAPDH activity was assessed in experiments with low doses of H2O2 under both dilute and crowded conditions (induced by inert high molecular mass polymers and small molecules), in both the absence and presence of 25 mM sodium bicarbonate. H2O2-induced inactivation of GAPDH was observed to be significantly enhanced under macromolecular crowding conditions, with bicarbonate having an additional effect. These data strongly suggest that these two factors are of major importance in redox switch mechanisms involving GAPDH (and possibly other thiol-dependent systems) within the cellular environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668361PMC
http://dx.doi.org/10.1042/BCJ20240597DOI Listing

Publication Analysis

Top Keywords

macromolecular crowding
12
glyceraldehyde-3-phosphate dehydrogenase
8
gapdh inactivation
8
redox switch
8
gapdh
7
bicarbonate
5
inactivation
5
crowding bicarbonate
4
bicarbonate enhance
4
enhance hydrogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!