Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The conventional methods for assessing kidney function, such as glomerular filtration rate and microalbuminuria, provide only partial insight into kidney function. Multi-parametric and multi-nuclear functional resonance magnetic imaging (MRI) techniques are innovative approaches to unraveling kidney physiology. Multi-parametric MRI includes various sequences to evaluate kidney perfusion, tissue oxygenation, and microstructure characterization, including fibrosis-a key pathological event in acute and chronic kidney disease and in transplant patients-without the need for invasive kidney biopsy. Multi-nuclear MRI detects nuclei other than protons. Na MRI enables visualization of the corticomedullary gradient and assessment of tissue sodium storage, which can be particularly relevant for personalized medicine in salt-wasting tubular disorders. Meanwhile, P-MRS measures intracellular phosphate and ATP variations, providing insights into oxidative metabolism in the muscle during exercise and recovery. This technique can be useful for detecting subclinical ischemia in chronic kidney disease and in tubulopathies with kidney phosphate wasting. These techniques are non-invasive and do not involve radiation exposure, making them especially suitable for longitudinal and serial assessments. They enable in vivo evaluation of kidney function on a whole-organ basis within a short acquisition time and with the ability to distinguish between medullary and cortical compartments. Therefore, they offer considerable potential for pediatric patients. In this review, we provide a brief overview of the main imaging techniques, summarize available literature data on both adult and pediatric populations, and examine the perspectives and challenges associated with multi-parametric and multi-nuclear MRI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00467-024-06560-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!