AI Article Synopsis

  • AmB has been used for over 60 years to treat serious fungal infections, specifically targeting ergosterol in fungal cell membranes to form ion-channel assemblies that contribute to its antibiotic effect.
  • Recent studies have determined the structure of the AmB ion channel in artificial lipid bilayers using solid-state NMR and molecular dynamics simulations, using specially labelled AmB molecules.
  • These findings highlight that the AmB channel, made of seven AmB molecules, functions effectively in conducting ions and is more stabilized by ergosterol than human cholesterol, providing insights into AmB’s pharmacological actions and potential side effects.

Article Abstract

Amphotericin B (AmB) has been clinically used for serious fungal infections for over 60 years. The drug is characterized by its specific recognition of ergosterol (Erg) in the fungal cell membrane. AmB and Erg form an ion-channel assembly, which is thought to play a major role in the antibiotic activity of AmB. The precise structure of the ion channel in fungal membranes still remains unelucidated. Recently, the structure of an AmB assembly formed in artificial lipid bilayers was determined using solid-state NMR and molecular dynamics simulations. The structure elucidation was made possible by using C- and F-labelled AmBs, which were efficiently synthesized using strategies and methods established in previous studies. This review focuses on the structure of the AmB ion channel, which accounts for the antibiotic activity. Additionally, the chemical syntheses of isotope-labelled AmB and Erg used for the structural studies are also reviewed. Solid-state NMR spectra of the labelled AmBs were recorded to measure the distances between labelled sites in the AmB-Erg assembly in lipid bilayers, revealing that the ion channel consisting of seven molecules of AmB spans the bilayer with a single molecule length. Extensive molecular dynamics simulations showed that the conductance of this AmB channel is comparable with those by single-channel recording. The simulations also demonstrated that Erg stabilizes the ion-channel assemblies more efficiently than human cholesterol. The atomic-level structure of the AmB channel in the artificial bilayer will help us to understand the mechanisms of the pharmacological actions and adverse effects of AmB.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4ob01468eDOI Listing

Publication Analysis

Top Keywords

ion channel
16
structure amb
12
amb
10
nmr molecular
8
structure elucidation
8
amb erg
8
antibiotic activity
8
lipid bilayers
8
solid-state nmr
8
molecular dynamics
8

Similar Publications

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.

View Article and Find Full Text PDF

Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

Whole-Exome Sequencing: Discovering Genetic Causes of Granulomatous Mastitis.

Int J Mol Sci

January 2025

Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye.

Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!