Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study presents a simple approach for fabricating low-density drug-polymer amorphous solid dispersions (ASDs) using a piezoelectric inkjet method, demonstrating potential applications for floating drug delivery systems (FDDS). By adjusting the ratio of two polymers, polylactic acid, and Eudragit RLPO, the floatability and drug release rate of the drug-polymer ASD particles can be easily manipulated. Kinetic model analyses have been conducted to interpret the drug release mechanism. This work offers a robust platform for exploring diverse polymer-drug combinations that are applicable to FDDS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c03556 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!