Addressing Class Imbalance in Bayesian Classification Through Posterior Probability Adjustment.

Biom J

Johnson & Johnson Innovative Medicine, Discovery Statistics, Beerse, Belgium.

Published: December 2024

Class imbalance is a known issue in classification tasks that can lead to predictive bias toward dominant classes. This paper introduces a novel straightforward Bayesian framework that adjusts posterior probabilities to counteract the bias introduced by imbalanced data sets. Instead of relying on the mean posterior distribution of class probabilities, we propose a method that scales the posterior probability of each class according to their representation in the training data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bimj.70004DOI Listing

Publication Analysis

Top Keywords

class imbalance
8
posterior probability
8
addressing class
4
imbalance bayesian
4
bayesian classification
4
posterior
4
classification posterior
4
probability adjustment
4
adjustment class
4
imbalance issue
4

Similar Publications

Zn transport across neuronal membranes relies on two classes of transition metal transporters: the ZnT (SLC30) and ZIP (SLC39) families. These proteins function to decrease and increase cytosolic Zn levels, respectively. Dysfunction of ZnT and ZIP transporters can alter intracellular Zn levels resulting in deleterious effects.

View Article and Find Full Text PDF

Fetal health holds paramount importance in prenatal care and obstetrics, as it directly impacts the wellbeing of mother and fetus. Monitoring fetal health through pregnancy is crucial for identifying and addressing potential risks and complications that may arise. Early detection of abnormalities and deviations in fetal health can facilitate timely interventions to mitigate risks and improve outcomes for the mother and fetus.

View Article and Find Full Text PDF

Background: Early and timely detection of pulmonary nodules and initiation treatment can substantially improve the survival rate of lung carcinoma. However, current detection methods based on convolutional neural networks (CNNs) cannot easily detect pulmonary nodules owing to low detection accuracy and the difficulty in detecting small-sized pulmonary nodules; meanwhile, more accurate CNN-based models are slow and require high hardware specifications.

Objective: The aim of this study is to develop a detection model that achieves both high accuracy and real-time performance, ensuring effective and timely results.

View Article and Find Full Text PDF

Early detection of subjective cognitive decline from self-reported symptoms: An interpretable attention-cost fusion approach.

J Biomed Inform

January 2025

Department of Information Management and Business Analytics, Montclair State University, Feliciano School of Business, NJ, USA. Electronic address:

Background And Objective: Subjective cognitive decline (SCD) refers to self-reported difficulties in concentration, memory, and decision-making. Since SCD is based on subjective experiences, no specific medical test can definitively confirm its presence, making early detection challenging. Thus, it is advantageous to develop an AI model to capitalize on self-reported health complications, personality traits, and sociodemographic factors for early detection of SCD.

View Article and Find Full Text PDF

Predicting the likelihood of readmission in patients with ischemic stroke: An explainable machine learning approach using common data model data.

Int J Med Inform

December 2024

Department of Health Policy and Management, School of Medicine, Kangwon National University, 510 School of Medicine Building #1 (N414), 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Preventive Medicine, Kangwon National University Hospital, 156 Baengnyeong-ro, Chuncheon-si, Gangwon-do 24289, Republic of Korea; Team of Public Medical Policy Development, Gangwon State Research Institute for People's Health, 880 Baksa-ro, Seo-myeon, Chuncheon-si, Gangwon-do 24461, Republic of Korea. Electronic address:

Background: Ischemic stroke affects 15 million people worldwide, causing five million deaths annually. Despite declining mortality rates, stroke incidence and readmission risks remain high, highlighting the need for preventing readmission to improve the quality of life of survivors. This study developed a machine-learning model to predict 90-day stroke readmission using electronic medical records converted to the common data model (CDM) from the Regional Accountable Care Hospital in Gangwon state in South Korea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!