Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultrafast sintering (UFS) is a compelling approach for fabricating LiLaZrO (LLZO) solid-state electrolytes (SSEs), paving the way for advancing and commercializing Li-garnet solid-state batteries. Although this method is commonly applied to the sintering of LLZO ceramics, its use for producing dense, phase-pure LLZO SSEs has thus far been primarily limited to millimeter-thick pellets, which are unsuitable for commercial solid-state batteries. This study presents ultrafast sintering as a highly effective approach for fabricating self-standing, dense, 45 µm-thick LLZO membranes. The chemical and structural evolution of LLZO membranes during the UFS process is characterized through in situ synchrotron X-ray diffraction and thermogravimetric analysis-mass spectrometry, complemented by an in-depth investigation of surface chemistry using X-ray photoelectron spectroscopy. The membranes in Li/LLZO/Li symmetrical cell configuration exhibit a high critical current density of up to 12.5 mA cm and maintain superior cycling stability for 250 cycles at a current density of 1 mA cm, with an areal capacity limit of 1 mAh cm. The electrochemical performance of LLZO membranes is also assessed in full cell configuration using a pyrochlore-type iron (III) hydroxy fluoride cathode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202412370 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!