Background: Sclerotinia sclerotiorum is a devastating fungal pathogen that poses a threat to a variety of economically important crops. Owing to the lack of highly resistant cultivars and the prolonged survival of sclerotia, effective control of Sclerotinia diseases remains challenging. RNA interference (RNAi) agents targeting essential active transcripts of genes associated with the development and virulence of pathogens are a valuable and promising disease control method.
Results: Our finding suggested that a flavin adenine dinucleotide (FAD)-dependent monooxygenase gene SsMNO1 plays pivotal roles in the hyphal growth, sclerotial development, and virulence of S. sclerotiorum, rendering it a potential target for RNAi-mediated management of S. sclerotiorum. The external application of double-stranded RNA (dsRNA) targeting SsMNO1 inhibited sclerotial development in artificial media and plant tissues. Furthermore, dsRNA significantly reduced the hyphal virulence of S. sclerotiorum in host plants by interfering with SsMNO1 expression. The inhibitory activity persisted for over 1 week on the surface of Brassica napus. Artificial small interfering RNA (siRNA) targeting SsMNO1 also exhibited inhibitory effects. Transgenic Arabidopsis thaliana plants expressing SsMNO1 hairpin RNAi constructs showed increased resistance to S. sclerotiorum infection. Notably, the total RNA extracts from SsMNO1-RNAi plants also reduced the hyphal virulence in Brassica napus.
Conclusions: Therefore, RNAi agents targeting SsMNO1 have dual effects on sclerotial development and hyphal virulence, rendering it an ideal target for controlling diseases caused by S. sclerotiorum. © 2024 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.8546 | DOI Listing |
Plant Dis
December 2024
University of Wisconsin-Madison, Plant Pathology, Madison, Wisconsin, United States;
Sclerotia serve as survival structures for many plant pathogens, including Sclerotinia sclerotiorum, which causes Sclerotinia stem rot (SSR) in soybeans and leads to significant yield losses. While partially resistant soybean varieties are effective in reducing SSR incidence, the relationship between resistance and sclerotial production remains unclear. This study investigated the sclerotial production of two soybean recombinant inbred lines (RILs) with differential levels of SSR resistance under both greenhouse and field conditions.
View Article and Find Full Text PDFPest Manag Sci
November 2024
College of Plant Protection, Southwest University, Chongqing City, China.
Mol Plant Pathol
November 2024
State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.
Ciboria shiraiana is a necrotrophic fungus that causes mulberry sclerotinia disease resulting in huge economic losses in agriculture. During infection, the fungus uses immunity elicitors to induce plant tissue necrosis that could facilitate its colonization on plants. However, the key elicitors and immune mechanisms remain unclear in C.
View Article and Find Full Text PDFPlant Dis
October 2024
Wuhan Academy of Agriculture Science, Institute of Crop Science, Wuhan, Hubei , China;
Sheng Wu Gong Cheng Xue Bao
October 2024
Key Laboratory of "Qin Medicine" Research and Development of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!