AI Article Synopsis

  • DNA-based storage is a promising solution for managing the exponential growth of big data, but traditional methods are costly and inefficient due to one-time-use synthesis for each data file.
  • A new system called "DNA-movable-type storage" leverages prefabricated DNA segments that can be assembled into data blocks, significantly streamlining the process and allowing for multi-format data storage and retrieval.
  • This innovative approach offers dramatic cost savings by enabling each DNA segment to be reused up to 10,000 times, ultimately making it a more efficient option for meeting the extensive storage demands of today's data-driven world.

Article Abstract

In the face of exponential data growth, DNA-based storage offers a promising solution for preserving big data. However, most existing DNA storage methods, akin to traditional block printing, require costly chemical synthesis for each individual data file, adopting a sequential, one-time-use synthesis approach. To overcome these limitations, a novel, cost-effective "DNA-movable-type storage" system, inspired by movable type printing, is introduced. This system utilizes prefabricated DNA movable types-short, double-stranded DNA oligonucleotides encoding specific payload, address, and checksum data. These DNA-MTs are enzymatically ligated/assembled into cohesive sequences, termed "DNA movable type blocks," streamlining the assembly process with the automated BISHENG-1 DNA-MT inkjet printer. Using BISHENG-1, 43.7 KB of data files are successfully printed, assembled, stored, and accurately retrieved in diverse formats (text, image, audio, and video) in vitro and in vivo, using only 350 DNA-MTs. Notably, each DNA-MT, synthesized once (2 OD), can be used up to 10000 times, reducing costs to $122/MB-outperforming existing DNA storage methods. This innovation circumvents the need to synthesize entire DNA sequences encoding files from scratch, offering significant cost and efficiency advantages. Furthermore, it has considerable untapped potential to advance a robust DNA storage system, better meeting the extensive data storage demands of the big-data era.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202411354DOI Listing

Publication Analysis

Top Keywords

dna storage
16
movable type
12
storage system
8
dna movable
8
existing dna
8
storage methods
8
dna
7
storage
6
data
6
cost-effective dna
4

Similar Publications

Background: Fruit quality traits, including taste, flavor, texture, and shelf-life, have emerged as important breeding priorities in blueberry (Vaccinium corymbosum). Organic acids and sugars play crucial roles in the perception of blueberry taste/flavor, where low and high consumer liking are correlated with high organic acids and high sugars, respectively. Blueberry texture and appearance are also critical for shelf-life quality and consumers' willingness-to-pay.

View Article and Find Full Text PDF

Artificially synthesized DNA holds significant promise in addressing fundamental biochemical questions and driving advancements in biotechnology, genetics, and DNA digital data storage. Rapid and precise electric identification of these artificial DNA strands is crucial for their effective application. Herein, we present a comprehensive investigation into the electric recognition of eight artificial synthesized DNA (DNA and DNA) nucleobases using quantum tunneling transport and machine learning (ML) techniques.

View Article and Find Full Text PDF

Ultrasensitive and high selectivity detection of fibrin using Y-shaped DNA-homing peptide doped probe on localized surface plasmon resonance platform.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.

Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.

View Article and Find Full Text PDF

This review aimed to assess the scope of the literature on tracking the microbial community of biofilms, focusing on the dairy farm and processing environments. The majority of studies focused on either production, storage, transport or processing of milk, while 5 combined the investigation of both production and processing facilities. Factors influencing short-term changes in dairy microbiota such as the occurrence of mastitis and season were distinguished from factors revealed through long-term studies, such as feed and weather, rather than the milking equipment.

View Article and Find Full Text PDF

Background: The burden of Alzheimer’s disease and related dementias is growing fast in Africa. The Recruitment and Retention for Alzheimer’s Disease Diversity Genetic Cohorts in the Alzheimer’s Disease Sequencing Project (READD‐ADSP) has commenced recruitment of 5000 African participants (AD and cognitively unimpaired individuals) to generate genomic and biomarker data to better characterize AD genetic architecture in Africa. Participating countries, part of the African Dementia Consortium (AfDC) include Nigeria, Ghana, Benin, Cameroon, Uganda, Kenya, Ethiopia, Tanzania, and Mozambique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!