Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study aimed to estimate the genetic parameters of stayability (STAY) at different calvings using a single-step genomic best linear unbiased prediction (ssGBLUP) approach, comparing Gaussian-linear and threshold models in Italian Charolais and Limousine beef cattle. It also examined the genetic relationship between STAY and other traits to identify potential indicators of longevity and assessed the impact of STAY selection on economically important traits. STAY, a key trait for farm profitability, is defined as the probability of a cow surviving and remaining productive in the herd until a determined age. We evaluated STAY from the second to third calving and subsequent intervals (e.g., STAY23, STAY78), along with two fertility traits and several conformation traits. Data included 47,362 Limousine cows and 9,174 Charolais cows from 2,471 to 1,774 herds, respectively, born between 1977 and 2023. Analyses were performed fitting univariate threshold and Gaussian-linear animal models to estimate genetic parameters for STAY traits (STAY2 to STAY8) using ssGBLUP. Also, bivariate models were used to estimate genetic correlations between STAY and fertility and conformation traits. Heritabilities for STAY ranged from 0.13 to 0.11 and from 0.21 to 0.14 for Limousine, and from 0.14 to 0.11 and from 0.21 to 0.19 for Charolais, using Gaussian-linear and threshold models, respectively. Significant re-ranking of genotyped sires based on STAY traits was observed, particularly for more distant calvings (STAY8) compared to earlier ones (STAY3), indicating that STAY traits are genetically distinct. Genetic correlations were positive between STAY and conformation traits for Limousine. In Charolais, many traits were uncorrelated, but some conformation traits showed positive correlations, except for rump convexity, which had negative correlations with STAY. In conclusion, the heritability estimates of STAY suggests that genetic improvement for longevity in Limousine and Charolais herds is feasible. Selecting sires with consistently high genomic breeding values for STAY across early and late calvings highlights the importance of long-term longevity. Genetic correlations indicate that selection based on conformation traits could enhance herd survival by improving cow resilience for the Limousine. Instead for the Charolais some conformation traits showed positive correlations with STAY, while rump convexity had negative association, potentially affecting longevity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630839 | PMC |
http://dx.doi.org/10.1093/jas/skae354 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!