Herbal extracts have been successfully used as feed additives in fish culture with attractive growth-promoting, immunostimulant, antimicrobial, and antioxidant properties for several fish and shellfish species. Therefore, we have designed a feeding trial to assess the impacts of dietary incorporation of extract (PAE) on common carp (). For this purpose, five isonitrogenous (35% protein) and isocaloric (~4,000 kcal/kg) diets have been supplied by supplementing PAE at the varying inclusion levels as 0.0%, 0.25%, 0.5%, 1.0%, and 2.0% diets, and growth performance and feed utilization, digestive enzyme activities, serum biochemical variables, antioxidant responses, and immunological factors were studied. The experiment continued for 60 days. At the termination of the experiment, the mean final weight, weight gain percentage (WG%), feed conversion rate (FCR), and specific growth rate (SGR) have been improved significantly in all fish groups fed PAE-based diets with regard to those fed the reference diets. A second-order polynomial regression equations indicate that the optimum dietary supplementation level of PAE in fish diets was ~1%. Serum cortisol, glucose, triglyceride, cholesterol, and malondialdehyde levels as well as catalase, alanine aminotransferase, and aspartate aminotransferase activities were significantly decreased generally in all PAE-supplemented groups compared to the control groups before and/or after high-temperature stress (32°C). Moreover, serum total protein, albumin, and total immunoglobulin levels as well as ACH50, lysozyme, superoxide dismutase, and glutathione peroxidase activities were increased before and/or after high-temperature stress (32°C). In conclusion, the results showed, for the first time, that dietary supplementation with ~1% PAE can improve growth performance, stimulated the digestive enzymes, and enchanced antioxidant status as well as immune parameters and prevented high-temperature stress of common carp.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324357 | PMC |
http://dx.doi.org/10.1155/2024/5526562 | DOI Listing |
BMC Plant Biol
January 2025
Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan.
Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Dr PDKV, Akola, Maharashtra, India.
Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Faculty of Engineering, Suez University, P.O.Box: 43221, Suez, Egypt.
This work examines the effects of Nb and Nb-B additives on the high-temperature flow behavior and mechanical properties of low-carbon steel. The base, 0.015% Nb-bearing (15Nb alloy), and 0.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, China.
spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!