Steady-state visual evoked potentials (SSVEPs) based brain-computer interface (BCI) has received considerable attention due to its high information transfer rate (ITR) and available quantity of targets. However, the performance of frequency identification methods heavily hinges on the amount of user calibration data and data length, which hinders the deployment in real-world applications. Recently, generative adversarial networks (GANs)-based data generation methods have been widely adopted to create synthetic electroencephalography data, holds promise to address these issues. In this paper, we proposed a GAN-based end-to-end signal transformation network for Time-window length Extension, termed as TEGAN. TEGAN transforms short-length SSVEP signals into long-length artificial SSVEP signals. Additionally, we introduced a two-stage training strategy and the LeCam-divergence regularization term to regularize the training process of GAN during the network implementation. The proposed TEGAN was evaluated on two public SSVEP datasets (a 4-class and 12-class dataset). With the assistance of TEGAN, the performance of traditional frequency recognition methods and deep learning-based methods have been significantly improved under limited calibration data. And the classification performance gap of various frequency recognition methods has been narrowed. This study substantiates the feasibility of the proposed method to extend the data length for short-time SSVEP signals for developing a high-performance BCI system. The proposed GAN-based methods have the great potential of shortening the calibration time and cutting down the budget for various real-world BCI-based applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564580 | PMC |
http://dx.doi.org/10.1007/s11571-024-10134-9 | DOI Listing |
eNeuro
January 2025
Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland
Human face categorization has been extensively studied using event-related potentials (ERPs), positing the N170 ERP component as a robust neural marker of face categorization. Recently, the fast periodic visual stimulation (FPVS) approach relying on steady-state visual evoked potentials (SSVEPs) has also been used to investigate face categorization. FPVS studies consistently report strong bilateral SSVEP face categorization responses over the occipito-temporal cortex, with a right hemispheric dominance, closely mirroring the N170 scalp topography.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Institute of Semiconductors Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100083, CHINA.
Objective: Steady-state visual evoked potentials (SSVEPs) rely on the photic driving response to encode electroencephalogram (EEG) signals stably and efficiently. However, the user experience of the traditional stimulation with high-contrast flickers urgently needs to be improved. In this study, we introduce a novel paradigm of grid stimulation with weak flickering perception, distinguished by a markedly lower proportion of stimulation area in the overall pattern.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
School of Computer Science, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China.
Brainprint recognition technology, regarded as a promising biometric technology, encounters challenges stemming from the time-varied, low signal-to-noise ratio of brain signals, such as electroencephalogram (EEG). Steady-state visual evoked potentials (SSVEP) exhibit high signal-to-noise ratio and frequency locking, making them a promising paradigm for brainprint recognition. Consequently, the extraction of time-invariant identity information from SSVEP EEG signals is essential.
View Article and Find Full Text PDFiScience
November 2024
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
In the field of steady-state visual evoked potential (SSVEP), stimulus paradigms are regularly arranged or mimic the style of a keyboard with the same size. However, stimulation paradigms have important effects on the performance of SSVEP systems, which correlate with the electroencephalogram (EEG) signal amplitude and recognition accuracy. This paper provides MP dataset that was acquired using a 12-target BCI speller.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
Steady-State Visually Evoked Potential (SSVEP) signals can be decoded by either a traditional machine learning algorithm or a deep learning network. Combining the two methods is expected to enhance the performance of an SSVEP-based brain-computer interface (BCI) by exploiting their advantages. However, an efficient strategy for integrating the two methods has not yet been established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!