The major human pathogen forms biofilms comprising of a fibrin network that increases attachment to surfaces and shields bacteria from the immune system. It secretes two coagulases, Coagulase (Coa) and von Willebrand factor binding protein (vWbp), which hijack the host coagulation cascade and trigger the formation of this fibrin clot. However, it is unclear how Coa and vWbp contribute differently to the localisation and dynamics of clot assembly in growing biofilms. Here, we address this question using high-precision time-resolved confocal microscopy of fluorescent fibrin to establish the spatiotemporal dynamics of fibrin clot formation in functional biofilms. We also use fluorescent fusion proteins to visualise the locations of Coa and vWbp in biofilms using both confocal laser scanning and high resolution highly inclined and laminated optical sheet microscopy. We visualise and quantify the spatiotemporal dynamics of fibrin production during initiation of biofilms in plasma amended with fluorescently labelled fibrinogen. We find that human serum stimulates coagulase production, and that Coa and vWbp loosely associate to the bacterial cell surface. Coa localises to cell surfaces to produce a surface-attached fibrin pseudocapsule but can diffuse from cells to produce matrix-associated fibrin. vWbp produces matrix-associated fibrin in the absence of Coa, and furthermore accelerates pseudocapsule production when Coa is present. Finally, we observe that fibrin production varies across the biofilm. A sub-population of non-dividing cells does not produce any pseudocapsule but remains within the protective extended fibrin network, which could be important for the persistence of biofilm infections as antibiotics are more effective against actively growing cells. Our findings indicate a more cooperative role between Coa and vWbp in building fibrin networks than previously thought, and a bet-hedging cell strategy where some cells produce biofilm matrix while others do not, but instead assume a dormant phenotype that could be associated with antibiotic tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564979 | PMC |
http://dx.doi.org/10.1016/j.bioflm.2024.100233 | DOI Listing |
Biofilm
December 2024
Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark.
The major human pathogen forms biofilms comprising of a fibrin network that increases attachment to surfaces and shields bacteria from the immune system. It secretes two coagulases, Coagulase (Coa) and von Willebrand factor binding protein (vWbp), which hijack the host coagulation cascade and trigger the formation of this fibrin clot. However, it is unclear how Coa and vWbp contribute differently to the localisation and dynamics of clot assembly in growing biofilms.
View Article and Find Full Text PDFHeliyon
November 2023
Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana.
The impact of staphylococci on food poisoning and infections could be higher than previously reported. In this study, we characterised the occurrence and coexistence of antimicrobial resistance and virulence genes of staphylococci isolates in foods. Staphylococci were isolated from 236 samples of selected street-vended foods and identified.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
October 2023
Changchun University of Chinese Medicine, Changchun, China.
Staphylococcus aureus (S. aureus) induces a variety of infectious diseases in humans and animals and is responsible for hospital- and community-acquired infections. The aim of this study was to investigate how bilobetin, a natural compound, attenuates S.
View Article and Find Full Text PDFFuture Microbiol
July 2023
Changchun University of Chinese Medicine, Changchun, 130117, China.
Our primary objective was to investigate the protective effects and mechanisms of isovanillic acid in mice infected with Newman. coagulation assays were used to validate vWbp and Coa as inhibitory targets of isovanillic acid. The binding mechanism of isovanillic acid to vWbp and Coa was investigated using molecular docking and point mutagenesis.
View Article and Find Full Text PDFSci Rep
August 2021
Department of Technology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.
Mastitis is a common and costly disease on dairy farms, commonly caused by Staphylococcus spp. though the various species are associated with different clinical outcomes. In the current study, we performed genomic analyses to determine the prevalence of adhesion, biofilm, and related regulatory genes in 478 staphylococcal species isolated from clinical and subclinical mastitis cases deposited in public databases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!